Skip to main content
  • Home
  • login
  • Browse the archive

    swh mirror partner logo
swh logo
SoftwareHeritage
Software
Heritage
Mirror
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • a6c7ef5
  • /
  • ssl
  • /
  • t1_enc.c
Raw File
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:a419e44d30fcdd177055d3e1f363ce45a900ca93
directory badge Iframe embedding
swh:1:dir:1fa51cdc0463929a999895e76fbe16660d211681
t1_enc.c
/* ssl/t1_enc.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include <stdio.h>
#include "ssl_locl.h"
#ifndef OPENSSL_NO_COMP
# include <openssl/comp.h>
#endif
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#ifdef KSSL_DEBUG
# include <openssl/des.h>
#endif

static void tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
                        int sec_len, unsigned char *seed, int seed_len,
                        unsigned char *out, int olen)
{
    int chunk;
    unsigned int j;
    HMAC_CTX ctx;
    HMAC_CTX ctx_tmp;
    unsigned char A1[EVP_MAX_MD_SIZE];
    unsigned int A1_len;

    chunk = EVP_MD_size(md);

    HMAC_CTX_init(&ctx);
    HMAC_CTX_init(&ctx_tmp);
    HMAC_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
    HMAC_CTX_set_flags(&ctx_tmp, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
    HMAC_Init_ex(&ctx, sec, sec_len, md, NULL);
    HMAC_Init_ex(&ctx_tmp, sec, sec_len, md, NULL);
    HMAC_Update(&ctx, seed, seed_len);
    HMAC_Final(&ctx, A1, &A1_len);

    for (;;) {
        HMAC_Init_ex(&ctx, NULL, 0, NULL, NULL); /* re-init */
        HMAC_Init_ex(&ctx_tmp, NULL, 0, NULL, NULL); /* re-init */
        HMAC_Update(&ctx, A1, A1_len);
        HMAC_Update(&ctx_tmp, A1, A1_len);
        HMAC_Update(&ctx, seed, seed_len);

        if (olen > chunk) {
            HMAC_Final(&ctx, out, &j);
            out += j;
            olen -= j;
            /* calc the next A1 value */
            HMAC_Final(&ctx_tmp, A1, &A1_len);
        } else {                /* last one */

            HMAC_Final(&ctx, A1, &A1_len);
            memcpy(out, A1, olen);
            break;
        }
    }
    HMAC_CTX_cleanup(&ctx);
    HMAC_CTX_cleanup(&ctx_tmp);
    OPENSSL_cleanse(A1, sizeof(A1));
}

static void tls1_PRF(const EVP_MD *md5, const EVP_MD *sha1,
                     unsigned char *label, int label_len,
                     const unsigned char *sec, int slen, unsigned char *out1,
                     unsigned char *out2, int olen)
{
    int len, i;
    const unsigned char *S1, *S2;

    len = slen / 2;
    S1 = sec;
    S2 = &(sec[len]);
    len += (slen & 1);          /* add for odd, make longer */

    tls1_P_hash(md5, S1, len, label, label_len, out1, olen);
    tls1_P_hash(sha1, S2, len, label, label_len, out2, olen);

    for (i = 0; i < olen; i++)
        out1[i] ^= out2[i];
}

static void tls1_generate_key_block(SSL *s, unsigned char *km,
                                    unsigned char *tmp, int num)
{
    unsigned char *p;
    unsigned char buf[SSL3_RANDOM_SIZE * 2 + TLS_MD_MAX_CONST_SIZE];
    p = buf;

    memcpy(p, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE);
    p += TLS_MD_KEY_EXPANSION_CONST_SIZE;
    memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE);
    p += SSL3_RANDOM_SIZE;
    memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
    p += SSL3_RANDOM_SIZE;

    tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, (int)(p - buf),
             s->session->master_key, s->session->master_key_length,
             km, tmp, num);
#ifdef KSSL_DEBUG
    printf("tls1_generate_key_block() ==> %d byte master_key =\n\t",
           s->session->master_key_length);
    {
        int i;
        for (i = 0; i < s->session->master_key_length; i++) {
            printf("%02X", s->session->master_key[i]);
        }
        printf("\n");
    }
#endif                          /* KSSL_DEBUG */
}

int tls1_change_cipher_state(SSL *s, int which)
{
    static const unsigned char empty[] = "";
    unsigned char *p, *mac_secret;
    unsigned char *exp_label, buf[TLS_MD_MAX_CONST_SIZE +
                                  SSL3_RANDOM_SIZE * 2];
    unsigned char tmp1[EVP_MAX_KEY_LENGTH];
    unsigned char tmp2[EVP_MAX_KEY_LENGTH];
    unsigned char iv1[EVP_MAX_IV_LENGTH * 2];
    unsigned char iv2[EVP_MAX_IV_LENGTH * 2];
    unsigned char *ms, *key, *iv;
    int client_write;
    EVP_CIPHER_CTX *dd;
    const EVP_CIPHER *c;
#ifndef OPENSSL_NO_COMP
    const SSL_COMP *comp;
#endif
    const EVP_MD *m;
    int is_export, n, i, j, k, exp_label_len, cl;
    int reuse_dd = 0;

    is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher);
    c = s->s3->tmp.new_sym_enc;
    m = s->s3->tmp.new_hash;
#ifndef OPENSSL_NO_COMP
    comp = s->s3->tmp.new_compression;
#endif

#ifdef KSSL_DEBUG
    key_block = s->s3->tmp.key_block;

    printf("tls1_change_cipher_state(which= %d) w/\n", which);
    printf("\talg= %ld, comp= %p\n", s->s3->tmp.new_cipher->algorithms,
           (void *)comp);
    printf("\tevp_cipher == %p ==? &d_cbc_ede_cipher3\n", (void *)c);
    printf("\tevp_cipher: nid, blksz= %d, %d, keylen=%d, ivlen=%d\n",
           c->nid, c->block_size, c->key_len, c->iv_len);
    printf("\tkey_block: len= %d, data= ", s->s3->tmp.key_block_length);
    {
        int ki;
        for (ki = 0; ki < s->s3->tmp.key_block_length; ki++)
            printf("%02x", s->s3->tmp.key_block[ki]);
        printf("\n");
    }
#endif                          /* KSSL_DEBUG */

    if (which & SSL3_CC_READ) {
        if (s->enc_read_ctx != NULL)
            reuse_dd = 1;
        else if ((s->enc_read_ctx =
                  OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
            goto err;
        else
            /*
             * make sure it's intialized in case we exit later with an error
             */
            EVP_CIPHER_CTX_init(s->enc_read_ctx);
        dd = s->enc_read_ctx;
        s->read_hash = m;
#ifndef OPENSSL_NO_COMP
        if (s->expand != NULL) {
            COMP_CTX_free(s->expand);
            s->expand = NULL;
        }
        if (comp != NULL) {
            s->expand = COMP_CTX_new(comp->method);
            if (s->expand == NULL) {
                SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
                       SSL_R_COMPRESSION_LIBRARY_ERROR);
                goto err2;
            }
            if (s->s3->rrec.comp == NULL)
                s->s3->rrec.comp = (unsigned char *)
                    OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
            if (s->s3->rrec.comp == NULL)
                goto err;
        }
#endif
        /*
         * this is done by dtls1_reset_seq_numbers for DTLS1_VERSION
         */
        if (s->version != DTLS1_VERSION)
            memset(&(s->s3->read_sequence[0]), 0, 8);
        mac_secret = &(s->s3->read_mac_secret[0]);
    } else {
        if (s->enc_write_ctx != NULL)
            reuse_dd = 1;
        else if ((s->enc_write_ctx =
                  OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
            goto err;
        else
            /*
             * make sure it's intialized in case we exit later with an error
             */
            EVP_CIPHER_CTX_init(s->enc_write_ctx);
        dd = s->enc_write_ctx;
        s->write_hash = m;
#ifndef OPENSSL_NO_COMP
        if (s->compress != NULL) {
            COMP_CTX_free(s->compress);
            s->compress = NULL;
        }
        if (comp != NULL) {
            s->compress = COMP_CTX_new(comp->method);
            if (s->compress == NULL) {
                SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
                       SSL_R_COMPRESSION_LIBRARY_ERROR);
                goto err2;
            }
        }
#endif
        /*
         * this is done by dtls1_reset_seq_numbers for DTLS1_VERSION
         */
        if (s->version != DTLS1_VERSION)
            memset(&(s->s3->write_sequence[0]), 0, 8);
        mac_secret = &(s->s3->write_mac_secret[0]);
    }

    if (reuse_dd)
        EVP_CIPHER_CTX_cleanup(dd);

    p = s->s3->tmp.key_block;
    i = EVP_MD_size(m);
    cl = EVP_CIPHER_key_length(c);
    j = is_export ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ?
                     cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl;
    /* Was j=(exp)?5:EVP_CIPHER_key_length(c); */
    k = EVP_CIPHER_iv_length(c);
    if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
        (which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
        ms = &(p[0]);
        n = i + i;
        key = &(p[n]);
        n += j + j;
        iv = &(p[n]);
        n += k + k;
        exp_label = (unsigned char *)TLS_MD_CLIENT_WRITE_KEY_CONST;
        exp_label_len = TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE;
        client_write = 1;
    } else {
        n = i;
        ms = &(p[n]);
        n += i + j;
        key = &(p[n]);
        n += j + k;
        iv = &(p[n]);
        n += k;
        exp_label = (unsigned char *)TLS_MD_SERVER_WRITE_KEY_CONST;
        exp_label_len = TLS_MD_SERVER_WRITE_KEY_CONST_SIZE;
        client_write = 0;
    }

    if (n > s->s3->tmp.key_block_length) {
        SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
        goto err2;
    }

    memcpy(mac_secret, ms, i);
#ifdef TLS_DEBUG
    printf("which = %04X\nmac key=", which);
    {
        int z;
        for (z = 0; z < i; z++)
            printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n');
    }
#endif
    if (is_export) {
        /*
         * In here I set both the read and write key/iv to the same value
         * since only the correct one will be used :-).
         */
        p = buf;
        memcpy(p, exp_label, exp_label_len);
        p += exp_label_len;
        memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
        p += SSL3_RANDOM_SIZE;
        memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE);
        p += SSL3_RANDOM_SIZE;
        tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, (int)(p - buf), key, j,
                 tmp1, tmp2, EVP_CIPHER_key_length(c));
        key = tmp1;

        if (k > 0) {
            p = buf;
            memcpy(p, TLS_MD_IV_BLOCK_CONST, TLS_MD_IV_BLOCK_CONST_SIZE);
            p += TLS_MD_IV_BLOCK_CONST_SIZE;
            memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
            p += SSL3_RANDOM_SIZE;
            memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE);
            p += SSL3_RANDOM_SIZE;
            tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, p - buf, empty, 0,
                     iv1, iv2, k * 2);
            if (client_write)
                iv = iv1;
            else
                iv = &(iv1[k]);
        }
    }

    s->session->key_arg_length = 0;
#ifdef KSSL_DEBUG
    {
        int ki;
        printf("EVP_CipherInit_ex(dd,c,key=,iv=,which)\n");
        printf("\tkey= ");
        for (ki = 0; ki < c->key_len; ki++)
            printf("%02x", key[ki]);
        printf("\n");
        printf("\t iv= ");
        for (ki = 0; ki < c->iv_len; ki++)
            printf("%02x", iv[ki]);
        printf("\n");
    }
#endif                          /* KSSL_DEBUG */

    EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE));
#ifdef TLS_DEBUG
    printf("which = %04X\nkey=", which);
    {
        int z;
        for (z = 0; z < EVP_CIPHER_key_length(c); z++)
            printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n');
    }
    printf("\niv=");
    {
        int z;
        for (z = 0; z < k; z++)
            printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n');
    }
    printf("\n");
#endif

    OPENSSL_cleanse(tmp1, sizeof(tmp1));
    OPENSSL_cleanse(tmp2, sizeof(tmp1));
    OPENSSL_cleanse(iv1, sizeof(iv1));
    OPENSSL_cleanse(iv2, sizeof(iv2));
    return (1);
 err:
    SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
 err2:
    return (0);
}

int tls1_setup_key_block(SSL *s)
{
    unsigned char *p1, *p2;
    const EVP_CIPHER *c;
    const EVP_MD *hash;
    int num;
    SSL_COMP *comp;

#ifdef KSSL_DEBUG
    printf("tls1_setup_key_block()\n");
#endif                          /* KSSL_DEBUG */

    if (s->s3->tmp.key_block_length != 0)
        return (1);

    if (!ssl_cipher_get_evp(s->session, &c, &hash, &comp)) {
        SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
        return (0);
    }

    s->s3->tmp.new_sym_enc = c;
    s->s3->tmp.new_hash = hash;

    num =
        EVP_CIPHER_key_length(c) + EVP_MD_size(hash) +
        EVP_CIPHER_iv_length(c);
    num *= 2;

    ssl3_cleanup_key_block(s);

    if ((p1 = (unsigned char *)OPENSSL_malloc(num)) == NULL)
        goto err;
    if ((p2 = (unsigned char *)OPENSSL_malloc(num)) == NULL)
        goto err;

    s->s3->tmp.key_block_length = num;
    s->s3->tmp.key_block = p1;

#ifdef TLS_DEBUG
    printf("client random\n");
    {
        int z;
        for (z = 0; z < SSL3_RANDOM_SIZE; z++)
            printf("%02X%c", s->s3->client_random[z],
                   ((z + 1) % 16) ? ' ' : '\n');
    }
    printf("server random\n");
    {
        int z;
        for (z = 0; z < SSL3_RANDOM_SIZE; z++)
            printf("%02X%c", s->s3->server_random[z],
                   ((z + 1) % 16) ? ' ' : '\n');
    }
    printf("pre-master\n");
    {
        int z;
        for (z = 0; z < s->session->master_key_length; z++)
            printf("%02X%c", s->session->master_key[z],
                   ((z + 1) % 16) ? ' ' : '\n');
    }
#endif
    tls1_generate_key_block(s, p1, p2, num);
    OPENSSL_cleanse(p2, num);
    OPENSSL_free(p2);
#ifdef TLS_DEBUG
    printf("\nkey block\n");
    {
        int z;
        for (z = 0; z < num; z++)
            printf("%02X%c", p1[z], ((z + 1) % 16) ? ' ' : '\n');
    }
#endif

    if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)) {
        /*
         * enable vulnerability countermeasure for CBC ciphers with known-IV
         * problem (http://www.openssl.org/~bodo/tls-cbc.txt)
         */
        s->s3->need_empty_fragments = 1;

        if (s->session->cipher != NULL) {
            if ((s->session->cipher->algorithms & SSL_ENC_MASK) == SSL_eNULL)
                s->s3->need_empty_fragments = 0;

#ifndef OPENSSL_NO_RC4
            if ((s->session->cipher->algorithms & SSL_ENC_MASK) == SSL_RC4)
                s->s3->need_empty_fragments = 0;
#endif
        }
    }

    return (1);
 err:
    SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
    return (0);
}

/*-
 * tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
 *
 * Returns:
 *   0: (in non-constant time) if the record is publically invalid (i.e. too
 *       short etc).
 *   1: if the record's padding is valid / the encryption was successful.
 *   -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
 *       an internal error occured.
 */
int tls1_enc(SSL *s, int send)
{
    SSL3_RECORD *rec;
    EVP_CIPHER_CTX *ds;
    unsigned long l;
    int bs, i, j, k, pad = 0, ret, mac_size = 0;
    const EVP_CIPHER *enc;

    if (send) {
        ds = s->enc_write_ctx;
        rec = &(s->s3->wrec);
        if (s->enc_write_ctx == NULL)
            enc = NULL;
        else
            enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
    } else {
        ds = s->enc_read_ctx;
        rec = &(s->s3->rrec);
        if (s->enc_read_ctx == NULL)
            enc = NULL;
        else
            enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
    }

#ifdef KSSL_DEBUG
    printf("tls1_enc(%d)\n", send);
#endif                          /* KSSL_DEBUG */

    if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
        memmove(rec->data, rec->input, rec->length);
        rec->input = rec->data;
        ret = 1;
    } else {
        l = rec->length;
        bs = EVP_CIPHER_block_size(ds->cipher);

        if ((bs != 1) && send) {
            i = bs - ((int)l % bs);

            /* Add weird padding of upto 256 bytes */

            /* we need to add 'i' padding bytes of value j */
            j = i - 1;
            if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) {
                if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG)
                    j++;
            }
            for (k = (int)l; k < (int)(l + i); k++)
                rec->input[k] = j;
            l += i;
            rec->length += i;
        }
#ifdef KSSL_DEBUG
        {
            unsigned long ui;
            printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n",
                   ds, rec->data, rec->input, l);
            printf
                ("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_len\n",
                 ds->buf_len, ds->cipher->key_len, DES_KEY_SZ,
                 DES_SCHEDULE_SZ, ds->cipher->iv_len);
            printf("\t\tIV: ");
            for (i = 0; i < ds->cipher->iv_len; i++)
                printf("%02X", ds->iv[i]);
            printf("\n");
            printf("\trec->input=");
            for (ui = 0; ui < l; ui++)
                printf(" %02x", rec->input[ui]);
            printf("\n");
        }
#endif                          /* KSSL_DEBUG */

        if (!send) {
            if (l == 0 || l % bs != 0)
                return 0;
        }

        EVP_Cipher(ds, rec->data, rec->input, l);

#ifdef KSSL_DEBUG
        {
            unsigned long ki;
            printf("\trec->data=");
            for (ki = 0; ki < l; i++)
                printf(" %02x", rec->data[ki]);
            printf("\n");
        }
#endif                          /* KSSL_DEBUG */

        ret = 1;
        if (s->read_hash != NULL)
            mac_size = EVP_MD_size(s->read_hash);
        if ((bs != 1) && !send)
            ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
        if (pad && !send)
            rec->length -= pad;
    }
    return ret;
}

int tls1_cert_verify_mac(SSL *s, EVP_MD_CTX *in_ctx, unsigned char *out)
{
    unsigned int ret;
    EVP_MD_CTX ctx;

    EVP_MD_CTX_init(&ctx);
    EVP_MD_CTX_copy_ex(&ctx, in_ctx);
    EVP_DigestFinal_ex(&ctx, out, &ret);
    EVP_MD_CTX_cleanup(&ctx);
    return ((int)ret);
}

int tls1_final_finish_mac(SSL *s, EVP_MD_CTX *in1_ctx, EVP_MD_CTX *in2_ctx,
                          const char *str, int slen, unsigned char *out)
{
    unsigned int i;
    EVP_MD_CTX ctx;
    unsigned char buf[TLS_MD_MAX_CONST_SIZE + MD5_DIGEST_LENGTH +
                      SHA_DIGEST_LENGTH];
    unsigned char *q, buf2[12];

    q = buf;
    memcpy(q, str, slen);
    q += slen;

    EVP_MD_CTX_init(&ctx);
    EVP_MD_CTX_copy_ex(&ctx, in1_ctx);
    EVP_DigestFinal_ex(&ctx, q, &i);
    q += i;
    EVP_MD_CTX_copy_ex(&ctx, in2_ctx);
    EVP_DigestFinal_ex(&ctx, q, &i);
    q += i;

    tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, (int)(q - buf),
             s->session->master_key, s->session->master_key_length,
             out, buf2, sizeof buf2);
    EVP_MD_CTX_cleanup(&ctx);

    OPENSSL_cleanse(buf, (int)(q - buf));
    OPENSSL_cleanse(buf2, sizeof(buf2));
    return sizeof buf2;
}

int tls1_mac(SSL *ssl, unsigned char *md, int send)
{
    SSL3_RECORD *rec;
    unsigned char *mac_sec, *seq;
    const EVP_MD *hash;
    size_t md_size, orig_len;
    int i;
    HMAC_CTX hmac;
    unsigned char header[13];

    if (send) {
        rec = &(ssl->s3->wrec);
        mac_sec = &(ssl->s3->write_mac_secret[0]);
        seq = &(ssl->s3->write_sequence[0]);
        hash = ssl->write_hash;
    } else {
        rec = &(ssl->s3->rrec);
        mac_sec = &(ssl->s3->read_mac_secret[0]);
        seq = &(ssl->s3->read_sequence[0]);
        hash = ssl->read_hash;
    }

    md_size = EVP_MD_size(hash);

    /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
    HMAC_CTX_init(&hmac);
    HMAC_Init_ex(&hmac, mac_sec, EVP_MD_size(hash), hash, NULL);

    if (ssl->version == DTLS1_BAD_VER ||
        (ssl->version == DTLS1_VERSION
         && ssl->client_version != DTLS1_BAD_VER)) {
        unsigned char dtlsseq[8], *p = dtlsseq;
        s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p);
        memcpy(p, &seq[2], 6);

        memcpy(header, dtlsseq, 8);
    } else
        memcpy(header, seq, 8);

    /*
     * kludge: tls1_cbc_remove_padding passes padding length in rec->type
     */
    orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
    rec->type &= 0xff;

    header[8] = rec->type;
    header[9] = (unsigned char)(ssl->version >> 8);
    header[10] = (unsigned char)(ssl->version);
    header[11] = (rec->length) >> 8;
    header[12] = (rec->length) & 0xff;

    if (!send &&
        EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
        ssl3_cbc_record_digest_supported(hash)) {
        /*
         * This is a CBC-encrypted record. We must avoid leaking any
         * timing-side channel information about how many blocks of data we
         * are hashing because that gives an attacker a timing-oracle.
         */
        /* Final param == not SSLv3 */
        ssl3_cbc_digest_record(hash,
                               md, &md_size,
                               header, rec->input,
                               rec->length + md_size, orig_len,
                               ssl->s3->read_mac_secret,
                               EVP_MD_size(ssl->read_hash),
                               /* not SSLv3 */
                               0);
    } else {
        unsigned mds;

        HMAC_Update(&hmac, header, sizeof(header));
        HMAC_Update(&hmac, rec->input, rec->length);
        HMAC_Final(&hmac, md, &mds);
        md_size = mds;
#ifdef OPENSSL_FIPS
        if (!send && FIPS_mode())
            tls_fips_digest_extra(ssl->enc_read_ctx,
                                  hash,
                                  &hmac, rec->input, rec->length, orig_len);
#endif
    }

    HMAC_CTX_cleanup(&hmac);
#ifdef TLS_DEBUG
    printf("seq=");
    {
        int z;
        for (z = 0; z < 8; z++)
            printf("%02X ", seq[z]);
        printf("\n");
    }
    printf("rec=");
    {
        unsigned int z;
        for (z = 0; z < rec->length; z++)
            printf("%02X ", rec->data[z]);
        printf("\n");
    }
#endif

    if (SSL_version(ssl) != DTLS1_VERSION
        && SSL_version(ssl) != DTLS1_BAD_VER) {
        for (i = 7; i >= 0; i--) {
            ++seq[i];
            if (seq[i] != 0)
                break;
        }
    }
#ifdef TLS_DEBUG
    {
        unsigned int z;
        for (z = 0; z < md_size; z++)
            printf("%02X ", md[z]);
        printf("\n");
    }
#endif
    return (md_size);
}

int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
                                int len)
{
    unsigned char buf[SSL3_RANDOM_SIZE * 2 + TLS_MD_MASTER_SECRET_CONST_SIZE];
    unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];

#ifdef KSSL_DEBUG
    printf("tls1_generate_master_secret(%p,%p, %p, %d)\n", (void *)s, out, p,
           len);
#endif                          /* KSSL_DEBUG */

    /* Setup the stuff to munge */
    memcpy(buf, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE);
    memcpy(&(buf[TLS_MD_MASTER_SECRET_CONST_SIZE]),
           s->s3->client_random, SSL3_RANDOM_SIZE);
    memcpy(&(buf[SSL3_RANDOM_SIZE + TLS_MD_MASTER_SECRET_CONST_SIZE]),
           s->s3->server_random, SSL3_RANDOM_SIZE);
    tls1_PRF(s->ctx->md5, s->ctx->sha1,
             buf, TLS_MD_MASTER_SECRET_CONST_SIZE + SSL3_RANDOM_SIZE * 2, p,
             len, s->session->master_key, buff, sizeof buff);
    OPENSSL_cleanse(buf, sizeof buf);
    OPENSSL_cleanse(buff, sizeof buff);
#ifdef KSSL_DEBUG
    printf("tls1_generate_master_secret() complete\n");
#endif                          /* KSSL_DEBUG */
    return (SSL3_MASTER_SECRET_SIZE);
}

int tls1_alert_code(int code)
{
    switch (code) {
    case SSL_AD_CLOSE_NOTIFY:
        return (SSL3_AD_CLOSE_NOTIFY);
    case SSL_AD_UNEXPECTED_MESSAGE:
        return (SSL3_AD_UNEXPECTED_MESSAGE);
    case SSL_AD_BAD_RECORD_MAC:
        return (SSL3_AD_BAD_RECORD_MAC);
    case SSL_AD_DECRYPTION_FAILED:
        return (TLS1_AD_DECRYPTION_FAILED);
    case SSL_AD_RECORD_OVERFLOW:
        return (TLS1_AD_RECORD_OVERFLOW);
    case SSL_AD_DECOMPRESSION_FAILURE:
        return (SSL3_AD_DECOMPRESSION_FAILURE);
    case SSL_AD_HANDSHAKE_FAILURE:
        return (SSL3_AD_HANDSHAKE_FAILURE);
    case SSL_AD_NO_CERTIFICATE:
        return (-1);
    case SSL_AD_BAD_CERTIFICATE:
        return (SSL3_AD_BAD_CERTIFICATE);
    case SSL_AD_UNSUPPORTED_CERTIFICATE:
        return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
    case SSL_AD_CERTIFICATE_REVOKED:
        return (SSL3_AD_CERTIFICATE_REVOKED);
    case SSL_AD_CERTIFICATE_EXPIRED:
        return (SSL3_AD_CERTIFICATE_EXPIRED);
    case SSL_AD_CERTIFICATE_UNKNOWN:
        return (SSL3_AD_CERTIFICATE_UNKNOWN);
    case SSL_AD_ILLEGAL_PARAMETER:
        return (SSL3_AD_ILLEGAL_PARAMETER);
    case SSL_AD_UNKNOWN_CA:
        return (TLS1_AD_UNKNOWN_CA);
    case SSL_AD_ACCESS_DENIED:
        return (TLS1_AD_ACCESS_DENIED);
    case SSL_AD_DECODE_ERROR:
        return (TLS1_AD_DECODE_ERROR);
    case SSL_AD_DECRYPT_ERROR:
        return (TLS1_AD_DECRYPT_ERROR);
    case SSL_AD_EXPORT_RESTRICTION:
        return (TLS1_AD_EXPORT_RESTRICTION);
    case SSL_AD_PROTOCOL_VERSION:
        return (TLS1_AD_PROTOCOL_VERSION);
    case SSL_AD_INSUFFICIENT_SECURITY:
        return (TLS1_AD_INSUFFICIENT_SECURITY);
    case SSL_AD_INTERNAL_ERROR:
        return (TLS1_AD_INTERNAL_ERROR);
    case SSL_AD_USER_CANCELLED:
        return (TLS1_AD_USER_CANCELLED);
    case SSL_AD_NO_RENEGOTIATION:
        return (TLS1_AD_NO_RENEGOTIATION);
    case SSL_AD_UNSUPPORTED_EXTENSION:
        return (TLS1_AD_UNSUPPORTED_EXTENSION);
    case SSL_AD_CERTIFICATE_UNOBTAINABLE:
        return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
    case SSL_AD_UNRECOGNIZED_NAME:
        return (TLS1_AD_UNRECOGNIZED_NAME);
    case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
        return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
    case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
        return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
    case SSL_AD_UNKNOWN_PSK_IDENTITY:
        return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
    case SSL_AD_INAPPROPRIATE_FALLBACK:
        return (TLS1_AD_INAPPROPRIATE_FALLBACK);
#ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
    case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE:
        return (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
#endif
    default:
        return (-1);
    }
}

ENEA — Copyright (C), ENEA. License: GNU AGPLv3+.
Legal notes  ::  JavaScript license information ::  Web API

back to top