Skip to main content
  • Home
  • login
  • Browse the archive

    swh mirror partner logo
swh logo
SoftwareHeritage
Software
Heritage
Mirror
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • d73b264
  • /
  • bn
  • /
  • bn_exp.c
Raw File
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:ef67843fc230a0290f40347f3a1b1dfc59dd3d7a
directory badge Iframe embedding
swh:1:dir:c280de74ae1a42c6bc8c711bb1593aa0634fef0e
bn_exp.c
/* crypto/bn/bn_exp.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include "cryptlib.h"
#include "bn_lcl.h"

/* maximum precomputation table size for *variable* sliding windows */
#define TABLE_SIZE      32

/* this one works - simple but works */
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
    int i, bits, ret = 0;
    BIGNUM *v, *rr;

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return -1;
    }

    BN_CTX_start(ctx);
    if ((r == a) || (r == p))
        rr = BN_CTX_get(ctx);
    else
        rr = r;
    v = BN_CTX_get(ctx);
    if (rr == NULL || v == NULL)
        goto err;

    if (BN_copy(v, a) == NULL)
        goto err;
    bits = BN_num_bits(p);

    if (BN_is_odd(p)) {
        if (BN_copy(rr, a) == NULL)
            goto err;
    } else {
        if (!BN_one(rr))
            goto err;
    }

    for (i = 1; i < bits; i++) {
        if (!BN_sqr(v, v, ctx))
            goto err;
        if (BN_is_bit_set(p, i)) {
            if (!BN_mul(rr, rr, v, ctx))
                goto err;
        }
    }
    ret = 1;
 err:
    if (r != rr)
        BN_copy(r, rr);
    BN_CTX_end(ctx);
    bn_check_top(r);
    return (ret);
}

int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
               BN_CTX *ctx)
{
    int ret;

    bn_check_top(a);
    bn_check_top(p);
    bn_check_top(m);

    /*-
     * For even modulus  m = 2^k*m_odd,  it might make sense to compute
     * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
     * exponentiation for the odd part), using appropriate exponent
     * reductions, and combine the results using the CRT.
     *
     * For now, we use Montgomery only if the modulus is odd; otherwise,
     * exponentiation using the reciprocal-based quick remaindering
     * algorithm is used.
     *
     * (Timing obtained with expspeed.c [computations  a^p mod m
     * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
     * 4096, 8192 bits], compared to the running time of the
     * standard algorithm:
     *
     *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
     *                     55 .. 77 %  [UltraSparc processor, but
     *                                  debug-solaris-sparcv8-gcc conf.]
     *
     *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
     *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
     *
     * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
     * at 2048 and more bits, but at 512 and 1024 bits, it was
     * slower even than the standard algorithm!
     *
     * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
     * should be obtained when the new Montgomery reduction code
     * has been integrated into OpenSSL.)
     */

#define MONT_MUL_MOD
#define MONT_EXP_WORD
#define RECP_MUL_MOD

#ifdef MONT_MUL_MOD
    /*
     * I have finally been able to take out this pre-condition of the top bit
     * being set.  It was caused by an error in BN_div with negatives.  There
     * was also another problem when for a^b%m a >= m.  eay 07-May-97
     */
    /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */

    if (BN_is_odd(m)) {
# ifdef MONT_EXP_WORD
        if (a->top == 1 && !a->neg
            && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) {
            BN_ULONG A = a->d[0];
            ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
        } else
# endif
            ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
    } else
#endif
#ifdef RECP_MUL_MOD
    {
        ret = BN_mod_exp_recp(r, a, p, m, ctx);
    }
#else
    {
        ret = BN_mod_exp_simple(r, a, p, m, ctx);
    }
#endif

    bn_check_top(r);
    return (ret);
}

int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
                    const BIGNUM *m, BN_CTX *ctx)
{
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
    int start = 1;
    BIGNUM *aa;
    /* Table of variables obtained from 'ctx' */
    BIGNUM *val[TABLE_SIZE];
    BN_RECP_CTX recp;

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return -1;
    }

    bits = BN_num_bits(p);

    if (bits == 0) {
        ret = BN_one(r);
        return ret;
    }

    BN_CTX_start(ctx);
    aa = BN_CTX_get(ctx);
    val[0] = BN_CTX_get(ctx);
    if (!aa || !val[0])
        goto err;

    BN_RECP_CTX_init(&recp);
    if (m->neg) {
        /* ignore sign of 'm' */
        if (!BN_copy(aa, m))
            goto err;
        aa->neg = 0;
        if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
            goto err;
    } else {
        if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
            goto err;
    }

    if (!BN_nnmod(val[0], a, m, ctx))
        goto err;               /* 1 */
    if (BN_is_zero(val[0])) {
        BN_zero(r);
        ret = 1;
        goto err;
    }

    window = BN_window_bits_for_exponent_size(bits);
    if (window > 1) {
        if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
            goto err;           /* 2 */
        j = 1 << (window - 1);
        for (i = 1; i < j; i++) {
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
                !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
                goto err;
        }
    }

    start = 1;                  /* This is used to avoid multiplication etc
                                 * when there is only the value '1' in the
                                 * buffer. */
    wvalue = 0;                 /* The 'value' of the window */
    wstart = bits - 1;          /* The top bit of the window */
    wend = 0;                   /* The bottom bit of the window */

    if (!BN_one(r))
        goto err;

    for (;;) {
        if (BN_is_bit_set(p, wstart) == 0) {
            if (!start)
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
                    goto err;
            if (wstart == 0)
                break;
            wstart--;
            continue;
        }
        /*
         * We now have wstart on a 'set' bit, we now need to work out how bit
         * a window to do.  To do this we need to scan forward until the last
         * set bit before the end of the window
         */
        j = wstart;
        wvalue = 1;
        wend = 0;
        for (i = 1; i < window; i++) {
            if (wstart - i < 0)
                break;
            if (BN_is_bit_set(p, wstart - i)) {
                wvalue <<= (i - wend);
                wvalue |= 1;
                wend = i;
            }
        }

        /* wend is the size of the current window */
        j = wend + 1;
        /* add the 'bytes above' */
        if (!start)
            for (i = 0; i < j; i++) {
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
                    goto err;
            }

        /* wvalue will be an odd number < 2^window */
        if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
            goto err;

        /* move the 'window' down further */
        wstart -= wend + 1;
        wvalue = 0;
        start = 0;
        if (wstart < 0)
            break;
    }
    ret = 1;
 err:
    BN_CTX_end(ctx);
    BN_RECP_CTX_free(&recp);
    bn_check_top(r);
    return (ret);
}

int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
    int start = 1;
    BIGNUM *d, *r;
    const BIGNUM *aa;
    /* Table of variables obtained from 'ctx' */
    BIGNUM *val[TABLE_SIZE];
    BN_MONT_CTX *mont = NULL;

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
        return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
    }

    bn_check_top(a);
    bn_check_top(p);
    bn_check_top(m);

    if (!BN_is_odd(m)) {
        BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS);
        return (0);
    }
    bits = BN_num_bits(p);
    if (bits == 0) {
        ret = BN_one(rr);
        return ret;
    }

    BN_CTX_start(ctx);
    d = BN_CTX_get(ctx);
    r = BN_CTX_get(ctx);
    val[0] = BN_CTX_get(ctx);
    if (!d || !r || !val[0])
        goto err;

    /*
     * If this is not done, things will break in the montgomery part
     */

    if (in_mont != NULL)
        mont = in_mont;
    else {
        if ((mont = BN_MONT_CTX_new()) == NULL)
            goto err;
        if (!BN_MONT_CTX_set(mont, m, ctx))
            goto err;
    }

    if (a->neg || BN_ucmp(a, m) >= 0) {
        if (!BN_nnmod(val[0], a, m, ctx))
            goto err;
        aa = val[0];
    } else
        aa = a;
    if (BN_is_zero(aa)) {
        BN_zero(rr);
        ret = 1;
        goto err;
    }
    if (!BN_to_montgomery(val[0], aa, mont, ctx))
        goto err;               /* 1 */

    window = BN_window_bits_for_exponent_size(bits);
    if (window > 1) {
        if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx))
            goto err;           /* 2 */
        j = 1 << (window - 1);
        for (i = 1; i < j; i++) {
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
                !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx))
                goto err;
        }
    }

    start = 1;                  /* This is used to avoid multiplication etc
                                 * when there is only the value '1' in the
                                 * buffer. */
    wvalue = 0;                 /* The 'value' of the window */
    wstart = bits - 1;          /* The top bit of the window */
    wend = 0;                   /* The bottom bit of the window */

    if (!BN_to_montgomery(r, BN_value_one(), mont, ctx))
        goto err;
    for (;;) {
        if (BN_is_bit_set(p, wstart) == 0) {
            if (!start) {
                if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
                    goto err;
            }
            if (wstart == 0)
                break;
            wstart--;
            continue;
        }
        /*
         * We now have wstart on a 'set' bit, we now need to work out how bit
         * a window to do.  To do this we need to scan forward until the last
         * set bit before the end of the window
         */
        j = wstart;
        wvalue = 1;
        wend = 0;
        for (i = 1; i < window; i++) {
            if (wstart - i < 0)
                break;
            if (BN_is_bit_set(p, wstart - i)) {
                wvalue <<= (i - wend);
                wvalue |= 1;
                wend = i;
            }
        }

        /* wend is the size of the current window */
        j = wend + 1;
        /* add the 'bytes above' */
        if (!start)
            for (i = 0; i < j; i++) {
                if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
                    goto err;
            }

        /* wvalue will be an odd number < 2^window */
        if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx))
            goto err;

        /* move the 'window' down further */
        wstart -= wend + 1;
        wvalue = 0;
        start = 0;
        if (wstart < 0)
            break;
    }
    if (!BN_from_montgomery(rr, r, mont, ctx))
        goto err;
    ret = 1;
 err:
    if ((in_mont == NULL) && (mont != NULL))
        BN_MONT_CTX_free(mont);
    BN_CTX_end(ctx);
    bn_check_top(rr);
    return (ret);
}

/*
 * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
 * layout so that accessing any of these table values shows the same access
 * pattern as far as cache lines are concerned.  The following functions are
 * used to transfer a BIGNUM from/to that table.
 */

static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top,
                                        unsigned char *buf, int idx,
                                        int width)
{
    size_t i, j;

    if (bn_wexpand(b, top) == NULL)
        return 0;
    while (b->top < top) {
        b->d[b->top++] = 0;
    }

    for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
        buf[j] = ((unsigned char *)b->d)[i];
    }

    bn_correct_top(b);
    return 1;
}

static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
                                          unsigned char *buf, int idx,
                                          int width)
{
    size_t i, j;

    if (bn_wexpand(b, top) == NULL)
        return 0;

    for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
        ((unsigned char *)b->d)[i] = buf[j];
    }

    b->top = top;
    bn_correct_top(b);
    return 1;
}

/*
 * Given a pointer value, compute the next address that is a cache line
 * multiple.
 */
#define MOD_EXP_CTIME_ALIGN(x_) \
        ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))

/*
 * This variant of BN_mod_exp_mont() uses fixed windows and the special
 * precomputation memory layout to limit data-dependency to a minimum to
 * protect secret exponents (cf. the hyper-threading timing attacks pointed
 * out by Colin Percival,
 * http://www.daemong-consideredperthreading-considered-harmful/)
 */
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
                              const BIGNUM *m, BN_CTX *ctx,
                              BN_MONT_CTX *in_mont)
{
    int i, bits, ret = 0, idx, window, wvalue;
    int top;
    BIGNUM *r;
    const BIGNUM *aa;
    BN_MONT_CTX *mont = NULL;

    int numPowers;
    unsigned char *powerbufFree = NULL;
    int powerbufLen = 0;
    unsigned char *powerbuf = NULL;
    BIGNUM *computeTemp = NULL, *am = NULL;

    bn_check_top(a);
    bn_check_top(p);
    bn_check_top(m);

    top = m->top;

    if (!(m->d[0] & 1)) {
        BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS);
        return (0);
    }
    bits = BN_num_bits(p);
    if (bits == 0) {
        ret = BN_one(rr);
        return ret;
    }

    /* Initialize BIGNUM context and allocate intermediate result */
    BN_CTX_start(ctx);
    r = BN_CTX_get(ctx);
    if (r == NULL)
        goto err;

    /*
     * Allocate a montgomery context if it was not supplied by the caller. If
     * this is not done, things will break in the montgomery part.
     */
    if (in_mont != NULL)
        mont = in_mont;
    else {
        if ((mont = BN_MONT_CTX_new()) == NULL)
            goto err;
        if (!BN_MONT_CTX_set(mont, m, ctx))
            goto err;
    }

    /* Get the window size to use with size of p. */
    window = BN_window_bits_for_ctime_exponent_size(bits);

    /*
     * Allocate a buffer large enough to hold all of the pre-computed powers
     * of a.
     */
    numPowers = 1 << window;
    powerbufLen = sizeof(m->d[0]) * top * numPowers;
    if ((powerbufFree =
         (unsigned char *)OPENSSL_malloc(powerbufLen +
                                         MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
        == NULL)
        goto err;

    powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
    memset(powerbuf, 0, powerbufLen);

    /*
     * Initialize the intermediate result. Do this early to save double
     * conversion, once each for a^0 and intermediate result.
     */
    if (!BN_to_montgomery(r, BN_value_one(), mont, ctx))
        goto err;
    if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers))
        goto err;

    /* Initialize computeTemp as a^1 with montgomery precalcs */
    computeTemp = BN_CTX_get(ctx);
    am = BN_CTX_get(ctx);
    if (computeTemp == NULL || am == NULL)
        goto err;

    if (a->neg || BN_ucmp(a, m) >= 0) {
        if (!BN_mod(am, a, m, ctx))
            goto err;
        aa = am;
    } else
        aa = a;
    if (!BN_to_montgomery(am, aa, mont, ctx))
        goto err;
    if (!BN_copy(computeTemp, am))
        goto err;
    if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers))
        goto err;

    /*
     * If the window size is greater than 1, then calculate
     * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even powers
     * could instead be computed as (a^(i/2))^2 to use the slight performance
     * advantage of sqr over mul).
     */
    if (window > 1) {
        for (i = 2; i < numPowers; i++) {
            /* Calculate a^i = a^(i-1) * a */
            if (!BN_mod_mul_montgomery
                (computeTemp, am, computeTemp, mont, ctx))
                goto err;
            if (!MOD_EXP_CTIME_COPY_TO_PREBUF
                (computeTemp, top, powerbuf, i, numPowers))
                goto err;
        }
    }

    /*
     * Adjust the number of bits up to a multiple of the window size. If the
     * exponent length is not a multiple of the window size, then this pads
     * the most significant bits with zeros to normalize the scanning loop to
     * there's no special cases. * NOTE: Making the window size a power of
     * two less than the native * word size ensures that the padded bits
     * won't go past the last * word in the internal BIGNUM structure. Going
     * past the end will * still produce the correct result, but causes a
     * different branch * to be taken in the BN_is_bit_set function.
     */
    bits = ((bits + window - 1) / window) * window;
    idx = bits - 1;             /* The top bit of the window */

    /*
     * Scan the exponent one window at a time starting from the most
     * significant bits.
     */
    while (idx >= 0) {
        wvalue = 0;             /* The 'value' of the window */

        /* Scan the window, squaring the result as we go */
        for (i = 0; i < window; i++, idx--) {
            if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
                goto err;
            wvalue = (wvalue << 1) + BN_is_bit_set(p, idx);
        }

        /*
         * Fetch the appropriate pre-computed value from the pre-buf
         */
        if (!MOD_EXP_CTIME_COPY_FROM_PREBUF
            (computeTemp, top, powerbuf, wvalue, numPowers))
            goto err;

        /* Multiply the result into the intermediate result */
        if (!BN_mod_mul_montgomery(r, r, computeTemp, mont, ctx))
            goto err;
    }

    /* Convert the final result from montgomery to standard format */
    if (!BN_from_montgomery(rr, r, mont, ctx))
        goto err;
    ret = 1;
 err:
    if ((in_mont == NULL) && (mont != NULL))
        BN_MONT_CTX_free(mont);
    if (powerbuf != NULL) {
        OPENSSL_cleanse(powerbuf, powerbufLen);
        OPENSSL_free(powerbufFree);
    }
    if (am != NULL)
        BN_clear(am);
    if (computeTemp != NULL)
        BN_clear(computeTemp);
    BN_CTX_end(ctx);
    return (ret);
}

int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
    BN_MONT_CTX *mont = NULL;
    int b, bits, ret = 0;
    int r_is_one;
    BN_ULONG w, next_w;
    BIGNUM *d, *r, *t;
    BIGNUM *swap_tmp;
#define BN_MOD_MUL_WORD(r, w, m) \
                (BN_mul_word(r, (w)) && \
                (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
                        (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
    /*
     * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
     * probably more overhead than always using BN_mod (which uses BN_copy if
     * a similar test returns true).
     */
    /*
     * We can use BN_mod and do not need BN_nnmod because our accumulator is
     * never negative (the result of BN_mod does not depend on the sign of
     * the modulus).
     */
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
                (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return -1;
    }

    bn_check_top(p);
    bn_check_top(m);

    if (!BN_is_odd(m)) {
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS);
        return (0);
    }
    if (m->top == 1)
        a %= m->d[0];           /* make sure that 'a' is reduced */

    bits = BN_num_bits(p);
    if (bits == 0) {
        /* x**0 mod 1 is still zero. */
        if (BN_is_one(m)) {
            ret = 1;
            BN_zero(rr);
        } else
            ret = BN_one(rr);
        return ret;
    }
    if (a == 0) {
        BN_zero(rr);
        ret = 1;
        return ret;
    }

    BN_CTX_start(ctx);
    d = BN_CTX_get(ctx);
    r = BN_CTX_get(ctx);
    t = BN_CTX_get(ctx);
    if (d == NULL || r == NULL || t == NULL)
        goto err;

    if (in_mont != NULL)
        mont = in_mont;
    else {
        if ((mont = BN_MONT_CTX_new()) == NULL)
            goto err;
        if (!BN_MONT_CTX_set(mont, m, ctx))
            goto err;
    }

    r_is_one = 1;               /* except for Montgomery factor */

    /* bits-1 >= 0 */

    /* The result is accumulated in the product r*w. */
    w = a;                      /* bit 'bits-1' of 'p' is always set */
    for (b = bits - 2; b >= 0; b--) {
        /* First, square r*w. */
        next_w = w * w;
        if ((next_w / w) != w) { /* overflow */
            if (r_is_one) {
                if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
                    goto err;
                r_is_one = 0;
            } else {
                if (!BN_MOD_MUL_WORD(r, w, m))
                    goto err;
            }
            next_w = 1;
        }
        w = next_w;
        if (!r_is_one) {
            if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
                goto err;
        }

        /* Second, multiply r*w by 'a' if exponent bit is set. */
        if (BN_is_bit_set(p, b)) {
            next_w = w * a;
            if ((next_w / a) != w) { /* overflow */
                if (r_is_one) {
                    if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
                        goto err;
                    r_is_one = 0;
                } else {
                    if (!BN_MOD_MUL_WORD(r, w, m))
                        goto err;
                }
                next_w = a;
            }
            w = next_w;
        }
    }

    /* Finally, set r:=r*w. */
    if (w != 1) {
        if (r_is_one) {
            if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
                goto err;
            r_is_one = 0;
        } else {
            if (!BN_MOD_MUL_WORD(r, w, m))
                goto err;
        }
    }

    if (r_is_one) {             /* can happen only if a == 1 */
        if (!BN_one(rr))
            goto err;
    } else {
        if (!BN_from_montgomery(rr, r, mont, ctx))
            goto err;
    }
    ret = 1;
 err:
    if ((in_mont == NULL) && (mont != NULL))
        BN_MONT_CTX_free(mont);
    BN_CTX_end(ctx);
    bn_check_top(rr);
    return (ret);
}

/* The old fallback, simple version :-) */
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
                      const BIGNUM *m, BN_CTX *ctx)
{
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
    int start = 1;
    BIGNUM *d;
    /* Table of variables obtained from 'ctx' */
    BIGNUM *val[TABLE_SIZE];

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return -1;
    }

    bits = BN_num_bits(p);

    if (bits == 0) {
        ret = BN_one(r);
        return ret;
    }

    BN_CTX_start(ctx);
    d = BN_CTX_get(ctx);
    val[0] = BN_CTX_get(ctx);
    if (!d || !val[0])
        goto err;

    if (!BN_nnmod(val[0], a, m, ctx))
        goto err;               /* 1 */
    if (BN_is_zero(val[0])) {
        BN_zero(r);
        ret = 1;
        goto err;
    }

    window = BN_window_bits_for_exponent_size(bits);
    if (window > 1) {
        if (!BN_mod_mul(d, val[0], val[0], m, ctx))
            goto err;           /* 2 */
        j = 1 << (window - 1);
        for (i = 1; i < j; i++) {
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
                !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
                goto err;
        }
    }

    start = 1;                  /* This is used to avoid multiplication etc
                                 * when there is only the value '1' in the
                                 * buffer. */
    wvalue = 0;                 /* The 'value' of the window */
    wstart = bits - 1;          /* The top bit of the window */
    wend = 0;                   /* The bottom bit of the window */

    if (!BN_one(r))
        goto err;

    for (;;) {
        if (BN_is_bit_set(p, wstart) == 0) {
            if (!start)
                if (!BN_mod_mul(r, r, r, m, ctx))
                    goto err;
            if (wstart == 0)
                break;
            wstart--;
            continue;
        }
        /*
         * We now have wstart on a 'set' bit, we now need to work out how bit
         * a window to do.  To do this we need to scan forward until the last
         * set bit before the end of the window
         */
        j = wstart;
        wvalue = 1;
        wend = 0;
        for (i = 1; i < window; i++) {
            if (wstart - i < 0)
                break;
            if (BN_is_bit_set(p, wstart - i)) {
                wvalue <<= (i - wend);
                wvalue |= 1;
                wend = i;
            }
        }

        /* wend is the size of the current window */
        j = wend + 1;
        /* add the 'bytes above' */
        if (!start)
            for (i = 0; i < j; i++) {
                if (!BN_mod_mul(r, r, r, m, ctx))
                    goto err;
            }

        /* wvalue will be an odd number < 2^window */
        if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
            goto err;

        /* move the 'window' down further */
        wstart -= wend + 1;
        wvalue = 0;
        start = 0;
        if (wstart < 0)
            break;
    }
    ret = 1;
 err:
    BN_CTX_end(ctx);
    bn_check_top(r);
    return (ret);
}

ENEA — Copyright (C), ENEA. License: GNU AGPLv3+.
Legal notes  ::  JavaScript license information ::  Web API

back to top