Revision 63ef0db60f7b9fc0c2bcabdc7e2bd133784ddd60 authored by Adam Langley on 13 December 2014, 20:13:10 UTC, committed by Matt Caswell on 16 December 2014, 14:46:57 UTC
The client_version needs to be preserved for the RSA key exchange. This change also means that renegotiation will, like TLS, repeat the old client_version rather than advertise only the final version. (Either way, version change on renego is not allowed.) This is necessary in TLS to work around an SChannel bug, but it's not strictly necessary in DTLS. (From BoringSSL) Reviewed-by: Emilia Käsper <emilia@openssl.org> (cherry picked from commit ec1af3c4195c1dfecdd9dc7458850ab1b8b951e0)
1 parent f74f5c8
bn_asm.c
/* crypto/bn/bn_asm.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#ifndef BN_DEBUG
# undef NDEBUG /* avoid conflicting definitions */
# define NDEBUG
#endif
#include <stdio.h>
#include <assert.h>
#include "cryptlib.h"
#include "bn_lcl.h"
#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
{
BN_ULONG c1=0;
assert(num >= 0);
if (num <= 0) return(c1);
#ifndef OPENSSL_SMALL_FOOTPRINT
while (num&~3)
{
mul_add(rp[0],ap[0],w,c1);
mul_add(rp[1],ap[1],w,c1);
mul_add(rp[2],ap[2],w,c1);
mul_add(rp[3],ap[3],w,c1);
ap+=4; rp+=4; num-=4;
}
#endif
while (num)
{
mul_add(rp[0],ap[0],w,c1);
ap++; rp++; num--;
}
return(c1);
}
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
{
BN_ULONG c1=0;
assert(num >= 0);
if (num <= 0) return(c1);
#ifndef OPENSSL_SMALL_FOOTPRINT
while (num&~3)
{
mul(rp[0],ap[0],w,c1);
mul(rp[1],ap[1],w,c1);
mul(rp[2],ap[2],w,c1);
mul(rp[3],ap[3],w,c1);
ap+=4; rp+=4; num-=4;
}
#endif
while (num)
{
mul(rp[0],ap[0],w,c1);
ap++; rp++; num--;
}
return(c1);
}
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
{
assert(n >= 0);
if (n <= 0) return;
#ifndef OPENSSL_SMALL_FOOTPRINT
while (n&~3)
{
sqr(r[0],r[1],a[0]);
sqr(r[2],r[3],a[1]);
sqr(r[4],r[5],a[2]);
sqr(r[6],r[7],a[3]);
a+=4; r+=8; n-=4;
}
#endif
while (n)
{
sqr(r[0],r[1],a[0]);
a++; r+=2; n--;
}
}
#else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
{
BN_ULONG c=0;
BN_ULONG bl,bh;
assert(num >= 0);
if (num <= 0) return((BN_ULONG)0);
bl=LBITS(w);
bh=HBITS(w);
#ifndef OPENSSL_SMALL_FOOTPRINT
while (num&~3)
{
mul_add(rp[0],ap[0],bl,bh,c);
mul_add(rp[1],ap[1],bl,bh,c);
mul_add(rp[2],ap[2],bl,bh,c);
mul_add(rp[3],ap[3],bl,bh,c);
ap+=4; rp+=4; num-=4;
}
#endif
while (num)
{
mul_add(rp[0],ap[0],bl,bh,c);
ap++; rp++; num--;
}
return(c);
}
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
{
BN_ULONG carry=0;
BN_ULONG bl,bh;
assert(num >= 0);
if (num <= 0) return((BN_ULONG)0);
bl=LBITS(w);
bh=HBITS(w);
#ifndef OPENSSL_SMALL_FOOTPRINT
while (num&~3)
{
mul(rp[0],ap[0],bl,bh,carry);
mul(rp[1],ap[1],bl,bh,carry);
mul(rp[2],ap[2],bl,bh,carry);
mul(rp[3],ap[3],bl,bh,carry);
ap+=4; rp+=4; num-=4;
}
#endif
while (num)
{
mul(rp[0],ap[0],bl,bh,carry);
ap++; rp++; num--;
}
return(carry);
}
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
{
assert(n >= 0);
if (n <= 0) return;
#ifndef OPENSSL_SMALL_FOOTPRINT
while (n&~3)
{
sqr64(r[0],r[1],a[0]);
sqr64(r[2],r[3],a[1]);
sqr64(r[4],r[5],a[2]);
sqr64(r[6],r[7],a[3]);
a+=4; r+=8; n-=4;
}
#endif
while (n)
{
sqr64(r[0],r[1],a[0]);
a++; r+=2; n--;
}
}
#endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
#if defined(BN_LLONG) && defined(BN_DIV2W)
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
{
return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
}
#else
/* Divide h,l by d and return the result. */
/* I need to test this some more :-( */
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
{
BN_ULONG dh,dl,q,ret=0,th,tl,t;
int i,count=2;
if (d == 0) return(BN_MASK2);
i=BN_num_bits_word(d);
assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
i=BN_BITS2-i;
if (h >= d) h-=d;
if (i)
{
d<<=i;
h=(h<<i)|(l>>(BN_BITS2-i));
l<<=i;
}
dh=(d&BN_MASK2h)>>BN_BITS4;
dl=(d&BN_MASK2l);
for (;;)
{
if ((h>>BN_BITS4) == dh)
q=BN_MASK2l;
else
q=h/dh;
th=q*dh;
tl=dl*q;
for (;;)
{
t=h-th;
if ((t&BN_MASK2h) ||
((tl) <= (
(t<<BN_BITS4)|
((l&BN_MASK2h)>>BN_BITS4))))
break;
q--;
th-=dh;
tl-=dl;
}
t=(tl>>BN_BITS4);
tl=(tl<<BN_BITS4)&BN_MASK2h;
th+=t;
if (l < tl) th++;
l-=tl;
if (h < th)
{
h+=d;
q--;
}
h-=th;
if (--count == 0) break;
ret=q<<BN_BITS4;
h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
l=(l&BN_MASK2l)<<BN_BITS4;
}
ret|=q;
return(ret);
}
#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
#ifdef BN_LLONG
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
{
BN_ULLONG ll=0;
assert(n >= 0);
if (n <= 0) return((BN_ULONG)0);
#ifndef OPENSSL_SMALL_FOOTPRINT
while (n&~3)
{
ll+=(BN_ULLONG)a[0]+b[0];
r[0]=(BN_ULONG)ll&BN_MASK2;
ll>>=BN_BITS2;
ll+=(BN_ULLONG)a[1]+b[1];
r[1]=(BN_ULONG)ll&BN_MASK2;
ll>>=BN_BITS2;
ll+=(BN_ULLONG)a[2]+b[2];
r[2]=(BN_ULONG)ll&BN_MASK2;
ll>>=BN_BITS2;
ll+=(BN_ULLONG)a[3]+b[3];
r[3]=(BN_ULONG)ll&BN_MASK2;
ll>>=BN_BITS2;
a+=4; b+=4; r+=4; n-=4;
}
#endif
while (n)
{
ll+=(BN_ULLONG)a[0]+b[0];
r[0]=(BN_ULONG)ll&BN_MASK2;
ll>>=BN_BITS2;
a++; b++; r++; n--;
}
return((BN_ULONG)ll);
}
#else /* !BN_LLONG */
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
{
BN_ULONG c,l,t;
assert(n >= 0);
if (n <= 0) return((BN_ULONG)0);
c=0;
#ifndef OPENSSL_SMALL_FOOTPRINT
while (n&~3)
{
t=a[0];
t=(t+c)&BN_MASK2;
c=(t < c);
l=(t+b[0])&BN_MASK2;
c+=(l < t);
r[0]=l;
t=a[1];
t=(t+c)&BN_MASK2;
c=(t < c);
l=(t+b[1])&BN_MASK2;
c+=(l < t);
r[1]=l;
t=a[2];
t=(t+c)&BN_MASK2;
c=(t < c);
l=(t+b[2])&BN_MASK2;
c+=(l < t);
r[2]=l;
t=a[3];
t=(t+c)&BN_MASK2;
c=(t < c);
l=(t+b[3])&BN_MASK2;
c+=(l < t);
r[3]=l;
a+=4; b+=4; r+=4; n-=4;
}
#endif
while(n)
{
t=a[0];
t=(t+c)&BN_MASK2;
c=(t < c);
l=(t+b[0])&BN_MASK2;
c+=(l < t);
r[0]=l;
a++; b++; r++; n--;
}
return((BN_ULONG)c);
}
#endif /* !BN_LLONG */
BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
{
BN_ULONG t1,t2;
int c=0;
assert(n >= 0);
if (n <= 0) return((BN_ULONG)0);
#ifndef OPENSSL_SMALL_FOOTPRINT
while (n&~3)
{
t1=a[0]; t2=b[0];
r[0]=(t1-t2-c)&BN_MASK2;
if (t1 != t2) c=(t1 < t2);
t1=a[1]; t2=b[1];
r[1]=(t1-t2-c)&BN_MASK2;
if (t1 != t2) c=(t1 < t2);
t1=a[2]; t2=b[2];
r[2]=(t1-t2-c)&BN_MASK2;
if (t1 != t2) c=(t1 < t2);
t1=a[3]; t2=b[3];
r[3]=(t1-t2-c)&BN_MASK2;
if (t1 != t2) c=(t1 < t2);
a+=4; b+=4; r+=4; n-=4;
}
#endif
while (n)
{
t1=a[0]; t2=b[0];
r[0]=(t1-t2-c)&BN_MASK2;
if (t1 != t2) c=(t1 < t2);
a++; b++; r++; n--;
}
return(c);
}
#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
#undef bn_mul_comba8
#undef bn_mul_comba4
#undef bn_sqr_comba8
#undef bn_sqr_comba4
/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
/* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
#ifdef BN_LLONG
#define mul_add_c(a,b,c0,c1,c2) \
t=(BN_ULLONG)a*b; \
t1=(BN_ULONG)Lw(t); \
t2=(BN_ULONG)Hw(t); \
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
#define mul_add_c2(a,b,c0,c1,c2) \
t=(BN_ULLONG)a*b; \
tt=(t+t)&BN_MASK; \
if (tt < t) c2++; \
t1=(BN_ULONG)Lw(tt); \
t2=(BN_ULONG)Hw(tt); \
c0=(c0+t1)&BN_MASK2; \
if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
#define sqr_add_c(a,i,c0,c1,c2) \
t=(BN_ULLONG)a[i]*a[i]; \
t1=(BN_ULONG)Lw(t); \
t2=(BN_ULONG)Hw(t); \
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
#define sqr_add_c2(a,i,j,c0,c1,c2) \
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
#elif defined(BN_UMULT_LOHI)
#define mul_add_c(a,b,c0,c1,c2) { \
BN_ULONG ta=(a),tb=(b); \
BN_UMULT_LOHI(t1,t2,ta,tb); \
c0 += t1; t2 += (c0<t1)?1:0; \
c1 += t2; c2 += (c1<t2)?1:0; \
}
#define mul_add_c2(a,b,c0,c1,c2) { \
BN_ULONG ta=(a),tb=(b),t0; \
BN_UMULT_LOHI(t0,t1,ta,tb); \
t2 = t1+t1; c2 += (t2<t1)?1:0; \
t1 = t0+t0; t2 += (t1<t0)?1:0; \
c0 += t1; t2 += (c0<t1)?1:0; \
c1 += t2; c2 += (c1<t2)?1:0; \
}
#define sqr_add_c(a,i,c0,c1,c2) { \
BN_ULONG ta=(a)[i]; \
BN_UMULT_LOHI(t1,t2,ta,ta); \
c0 += t1; t2 += (c0<t1)?1:0; \
c1 += t2; c2 += (c1<t2)?1:0; \
}
#define sqr_add_c2(a,i,j,c0,c1,c2) \
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
#elif defined(BN_UMULT_HIGH)
#define mul_add_c(a,b,c0,c1,c2) { \
BN_ULONG ta=(a),tb=(b); \
t1 = ta * tb; \
t2 = BN_UMULT_HIGH(ta,tb); \
c0 += t1; t2 += (c0<t1)?1:0; \
c1 += t2; c2 += (c1<t2)?1:0; \
}
#define mul_add_c2(a,b,c0,c1,c2) { \
BN_ULONG ta=(a),tb=(b),t0; \
t1 = BN_UMULT_HIGH(ta,tb); \
t0 = ta * tb; \
t2 = t1+t1; c2 += (t2<t1)?1:0; \
t1 = t0+t0; t2 += (t1<t0)?1:0; \
c0 += t1; t2 += (c0<t1)?1:0; \
c1 += t2; c2 += (c1<t2)?1:0; \
}
#define sqr_add_c(a,i,c0,c1,c2) { \
BN_ULONG ta=(a)[i]; \
t1 = ta * ta; \
t2 = BN_UMULT_HIGH(ta,ta); \
c0 += t1; t2 += (c0<t1)?1:0; \
c1 += t2; c2 += (c1<t2)?1:0; \
}
#define sqr_add_c2(a,i,j,c0,c1,c2) \
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
#else /* !BN_LLONG */
#define mul_add_c(a,b,c0,c1,c2) \
t1=LBITS(a); t2=HBITS(a); \
bl=LBITS(b); bh=HBITS(b); \
mul64(t1,t2,bl,bh); \
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
#define mul_add_c2(a,b,c0,c1,c2) \
t1=LBITS(a); t2=HBITS(a); \
bl=LBITS(b); bh=HBITS(b); \
mul64(t1,t2,bl,bh); \
if (t2 & BN_TBIT) c2++; \
t2=(t2+t2)&BN_MASK2; \
if (t1 & BN_TBIT) t2++; \
t1=(t1+t1)&BN_MASK2; \
c0=(c0+t1)&BN_MASK2; \
if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
#define sqr_add_c(a,i,c0,c1,c2) \
sqr64(t1,t2,(a)[i]); \
c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
#define sqr_add_c2(a,i,j,c0,c1,c2) \
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
#endif /* !BN_LLONG */
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
{
#ifdef BN_LLONG
BN_ULLONG t;
#else
BN_ULONG bl,bh;
#endif
BN_ULONG t1,t2;
BN_ULONG c1,c2,c3;
c1=0;
c2=0;
c3=0;
mul_add_c(a[0],b[0],c1,c2,c3);
r[0]=c1;
c1=0;
mul_add_c(a[0],b[1],c2,c3,c1);
mul_add_c(a[1],b[0],c2,c3,c1);
r[1]=c2;
c2=0;
mul_add_c(a[2],b[0],c3,c1,c2);
mul_add_c(a[1],b[1],c3,c1,c2);
mul_add_c(a[0],b[2],c3,c1,c2);
r[2]=c3;
c3=0;
mul_add_c(a[0],b[3],c1,c2,c3);
mul_add_c(a[1],b[2],c1,c2,c3);
mul_add_c(a[2],b[1],c1,c2,c3);
mul_add_c(a[3],b[0],c1,c2,c3);
r[3]=c1;
c1=0;
mul_add_c(a[4],b[0],c2,c3,c1);
mul_add_c(a[3],b[1],c2,c3,c1);
mul_add_c(a[2],b[2],c2,c3,c1);
mul_add_c(a[1],b[3],c2,c3,c1);
mul_add_c(a[0],b[4],c2,c3,c1);
r[4]=c2;
c2=0;
mul_add_c(a[0],b[5],c3,c1,c2);
mul_add_c(a[1],b[4],c3,c1,c2);
mul_add_c(a[2],b[3],c3,c1,c2);
mul_add_c(a[3],b[2],c3,c1,c2);
mul_add_c(a[4],b[1],c3,c1,c2);
mul_add_c(a[5],b[0],c3,c1,c2);
r[5]=c3;
c3=0;
mul_add_c(a[6],b[0],c1,c2,c3);
mul_add_c(a[5],b[1],c1,c2,c3);
mul_add_c(a[4],b[2],c1,c2,c3);
mul_add_c(a[3],b[3],c1,c2,c3);
mul_add_c(a[2],b[4],c1,c2,c3);
mul_add_c(a[1],b[5],c1,c2,c3);
mul_add_c(a[0],b[6],c1,c2,c3);
r[6]=c1;
c1=0;
mul_add_c(a[0],b[7],c2,c3,c1);
mul_add_c(a[1],b[6],c2,c3,c1);
mul_add_c(a[2],b[5],c2,c3,c1);
mul_add_c(a[3],b[4],c2,c3,c1);
mul_add_c(a[4],b[3],c2,c3,c1);
mul_add_c(a[5],b[2],c2,c3,c1);
mul_add_c(a[6],b[1],c2,c3,c1);
mul_add_c(a[7],b[0],c2,c3,c1);
r[7]=c2;
c2=0;
mul_add_c(a[7],b[1],c3,c1,c2);
mul_add_c(a[6],b[2],c3,c1,c2);
mul_add_c(a[5],b[3],c3,c1,c2);
mul_add_c(a[4],b[4],c3,c1,c2);
mul_add_c(a[3],b[5],c3,c1,c2);
mul_add_c(a[2],b[6],c3,c1,c2);
mul_add_c(a[1],b[7],c3,c1,c2);
r[8]=c3;
c3=0;
mul_add_c(a[2],b[7],c1,c2,c3);
mul_add_c(a[3],b[6],c1,c2,c3);
mul_add_c(a[4],b[5],c1,c2,c3);
mul_add_c(a[5],b[4],c1,c2,c3);
mul_add_c(a[6],b[3],c1,c2,c3);
mul_add_c(a[7],b[2],c1,c2,c3);
r[9]=c1;
c1=0;
mul_add_c(a[7],b[3],c2,c3,c1);
mul_add_c(a[6],b[4],c2,c3,c1);
mul_add_c(a[5],b[5],c2,c3,c1);
mul_add_c(a[4],b[6],c2,c3,c1);
mul_add_c(a[3],b[7],c2,c3,c1);
r[10]=c2;
c2=0;
mul_add_c(a[4],b[7],c3,c1,c2);
mul_add_c(a[5],b[6],c3,c1,c2);
mul_add_c(a[6],b[5],c3,c1,c2);
mul_add_c(a[7],b[4],c3,c1,c2);
r[11]=c3;
c3=0;
mul_add_c(a[7],b[5],c1,c2,c3);
mul_add_c(a[6],b[6],c1,c2,c3);
mul_add_c(a[5],b[7],c1,c2,c3);
r[12]=c1;
c1=0;
mul_add_c(a[6],b[7],c2,c3,c1);
mul_add_c(a[7],b[6],c2,c3,c1);
r[13]=c2;
c2=0;
mul_add_c(a[7],b[7],c3,c1,c2);
r[14]=c3;
r[15]=c1;
}
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
{
#ifdef BN_LLONG
BN_ULLONG t;
#else
BN_ULONG bl,bh;
#endif
BN_ULONG t1,t2;
BN_ULONG c1,c2,c3;
c1=0;
c2=0;
c3=0;
mul_add_c(a[0],b[0],c1,c2,c3);
r[0]=c1;
c1=0;
mul_add_c(a[0],b[1],c2,c3,c1);
mul_add_c(a[1],b[0],c2,c3,c1);
r[1]=c2;
c2=0;
mul_add_c(a[2],b[0],c3,c1,c2);
mul_add_c(a[1],b[1],c3,c1,c2);
mul_add_c(a[0],b[2],c3,c1,c2);
r[2]=c3;
c3=0;
mul_add_c(a[0],b[3],c1,c2,c3);
mul_add_c(a[1],b[2],c1,c2,c3);
mul_add_c(a[2],b[1],c1,c2,c3);
mul_add_c(a[3],b[0],c1,c2,c3);
r[3]=c1;
c1=0;
mul_add_c(a[3],b[1],c2,c3,c1);
mul_add_c(a[2],b[2],c2,c3,c1);
mul_add_c(a[1],b[3],c2,c3,c1);
r[4]=c2;
c2=0;
mul_add_c(a[2],b[3],c3,c1,c2);
mul_add_c(a[3],b[2],c3,c1,c2);
r[5]=c3;
c3=0;
mul_add_c(a[3],b[3],c1,c2,c3);
r[6]=c1;
r[7]=c2;
}
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
{
#ifdef BN_LLONG
BN_ULLONG t,tt;
#else
BN_ULONG bl,bh;
#endif
BN_ULONG t1,t2;
BN_ULONG c1,c2,c3;
c1=0;
c2=0;
c3=0;
sqr_add_c(a,0,c1,c2,c3);
r[0]=c1;
c1=0;
sqr_add_c2(a,1,0,c2,c3,c1);
r[1]=c2;
c2=0;
sqr_add_c(a,1,c3,c1,c2);
sqr_add_c2(a,2,0,c3,c1,c2);
r[2]=c3;
c3=0;
sqr_add_c2(a,3,0,c1,c2,c3);
sqr_add_c2(a,2,1,c1,c2,c3);
r[3]=c1;
c1=0;
sqr_add_c(a,2,c2,c3,c1);
sqr_add_c2(a,3,1,c2,c3,c1);
sqr_add_c2(a,4,0,c2,c3,c1);
r[4]=c2;
c2=0;
sqr_add_c2(a,5,0,c3,c1,c2);
sqr_add_c2(a,4,1,c3,c1,c2);
sqr_add_c2(a,3,2,c3,c1,c2);
r[5]=c3;
c3=0;
sqr_add_c(a,3,c1,c2,c3);
sqr_add_c2(a,4,2,c1,c2,c3);
sqr_add_c2(a,5,1,c1,c2,c3);
sqr_add_c2(a,6,0,c1,c2,c3);
r[6]=c1;
c1=0;
sqr_add_c2(a,7,0,c2,c3,c1);
sqr_add_c2(a,6,1,c2,c3,c1);
sqr_add_c2(a,5,2,c2,c3,c1);
sqr_add_c2(a,4,3,c2,c3,c1);
r[7]=c2;
c2=0;
sqr_add_c(a,4,c3,c1,c2);
sqr_add_c2(a,5,3,c3,c1,c2);
sqr_add_c2(a,6,2,c3,c1,c2);
sqr_add_c2(a,7,1,c3,c1,c2);
r[8]=c3;
c3=0;
sqr_add_c2(a,7,2,c1,c2,c3);
sqr_add_c2(a,6,3,c1,c2,c3);
sqr_add_c2(a,5,4,c1,c2,c3);
r[9]=c1;
c1=0;
sqr_add_c(a,5,c2,c3,c1);
sqr_add_c2(a,6,4,c2,c3,c1);
sqr_add_c2(a,7,3,c2,c3,c1);
r[10]=c2;
c2=0;
sqr_add_c2(a,7,4,c3,c1,c2);
sqr_add_c2(a,6,5,c3,c1,c2);
r[11]=c3;
c3=0;
sqr_add_c(a,6,c1,c2,c3);
sqr_add_c2(a,7,5,c1,c2,c3);
r[12]=c1;
c1=0;
sqr_add_c2(a,7,6,c2,c3,c1);
r[13]=c2;
c2=0;
sqr_add_c(a,7,c3,c1,c2);
r[14]=c3;
r[15]=c1;
}
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
{
#ifdef BN_LLONG
BN_ULLONG t,tt;
#else
BN_ULONG bl,bh;
#endif
BN_ULONG t1,t2;
BN_ULONG c1,c2,c3;
c1=0;
c2=0;
c3=0;
sqr_add_c(a,0,c1,c2,c3);
r[0]=c1;
c1=0;
sqr_add_c2(a,1,0,c2,c3,c1);
r[1]=c2;
c2=0;
sqr_add_c(a,1,c3,c1,c2);
sqr_add_c2(a,2,0,c3,c1,c2);
r[2]=c3;
c3=0;
sqr_add_c2(a,3,0,c1,c2,c3);
sqr_add_c2(a,2,1,c1,c2,c3);
r[3]=c1;
c1=0;
sqr_add_c(a,2,c2,c3,c1);
sqr_add_c2(a,3,1,c2,c3,c1);
r[4]=c2;
c2=0;
sqr_add_c2(a,3,2,c3,c1,c2);
r[5]=c3;
c3=0;
sqr_add_c(a,3,c1,c2,c3);
r[6]=c1;
r[7]=c2;
}
#ifdef OPENSSL_NO_ASM
#ifdef OPENSSL_BN_ASM_MONT
#include <alloca.h>
/*
* This is essentially reference implementation, which may or may not
* result in performance improvement. E.g. on IA-32 this routine was
* observed to give 40% faster rsa1024 private key operations and 10%
* faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
* by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
* reference implementation, one to be used as starting point for
* platform-specific assembler. Mentioned numbers apply to compiler
* generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
* can vary not only from platform to platform, but even for compiler
* versions. Assembler vs. assembler improvement coefficients can
* [and are known to] differ and are to be documented elsewhere.
*/
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
{
BN_ULONG c0,c1,ml,*tp,n0;
#ifdef mul64
BN_ULONG mh;
#endif
volatile BN_ULONG *vp;
int i=0,j;
#if 0 /* template for platform-specific implementation */
if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
#endif
vp = tp = alloca((num+2)*sizeof(BN_ULONG));
n0 = *n0p;
c0 = 0;
ml = bp[0];
#ifdef mul64
mh = HBITS(ml);
ml = LBITS(ml);
for (j=0;j<num;++j)
mul(tp[j],ap[j],ml,mh,c0);
#else
for (j=0;j<num;++j)
mul(tp[j],ap[j],ml,c0);
#endif
tp[num] = c0;
tp[num+1] = 0;
goto enter;
for(i=0;i<num;i++)
{
c0 = 0;
ml = bp[i];
#ifdef mul64
mh = HBITS(ml);
ml = LBITS(ml);
for (j=0;j<num;++j)
mul_add(tp[j],ap[j],ml,mh,c0);
#else
for (j=0;j<num;++j)
mul_add(tp[j],ap[j],ml,c0);
#endif
c1 = (tp[num] + c0)&BN_MASK2;
tp[num] = c1;
tp[num+1] = (c1<c0?1:0);
enter:
c1 = tp[0];
ml = (c1*n0)&BN_MASK2;
c0 = 0;
#ifdef mul64
mh = HBITS(ml);
ml = LBITS(ml);
mul_add(c1,np[0],ml,mh,c0);
#else
mul_add(c1,ml,np[0],c0);
#endif
for(j=1;j<num;j++)
{
c1 = tp[j];
#ifdef mul64
mul_add(c1,np[j],ml,mh,c0);
#else
mul_add(c1,ml,np[j],c0);
#endif
tp[j-1] = c1&BN_MASK2;
}
c1 = (tp[num] + c0)&BN_MASK2;
tp[num-1] = c1;
tp[num] = tp[num+1] + (c1<c0?1:0);
}
if (tp[num]!=0 || tp[num-1]>=np[num-1])
{
c0 = bn_sub_words(rp,tp,np,num);
if (tp[num]!=0 || c0==0)
{
for(i=0;i<num+2;i++) vp[i] = 0;
return 1;
}
}
for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
vp[num] = 0;
vp[num+1] = 0;
return 1;
}
#else
/*
* Return value of 0 indicates that multiplication/convolution was not
* performed to signal the caller to fall down to alternative/original
* code-path.
*/
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
{ return 0; }
#endif /* OPENSSL_BN_ASM_MONT */
#endif
#else /* !BN_MUL_COMBA */
/* hmm... is it faster just to do a multiply? */
#undef bn_sqr_comba4
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
{
BN_ULONG t[8];
bn_sqr_normal(r,a,4,t);
}
#undef bn_sqr_comba8
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
{
BN_ULONG t[16];
bn_sqr_normal(r,a,8,t);
}
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
{
r[4]=bn_mul_words( &(r[0]),a,4,b[0]);
r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
}
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
{
r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
}
#ifdef OPENSSL_NO_ASM
#ifdef OPENSSL_BN_ASM_MONT
#include <alloca.h>
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
{
BN_ULONG c0,c1,*tp,n0=*n0p;
volatile BN_ULONG *vp;
int i=0,j;
vp = tp = alloca((num+2)*sizeof(BN_ULONG));
for(i=0;i<=num;i++) tp[i]=0;
for(i=0;i<num;i++)
{
c0 = bn_mul_add_words(tp,ap,num,bp[i]);
c1 = (tp[num] + c0)&BN_MASK2;
tp[num] = c1;
tp[num+1] = (c1<c0?1:0);
c0 = bn_mul_add_words(tp,np,num,tp[0]*n0);
c1 = (tp[num] + c0)&BN_MASK2;
tp[num] = c1;
tp[num+1] += (c1<c0?1:0);
for(j=0;j<=num;j++) tp[j]=tp[j+1];
}
if (tp[num]!=0 || tp[num-1]>=np[num-1])
{
c0 = bn_sub_words(rp,tp,np,num);
if (tp[num]!=0 || c0==0)
{
for(i=0;i<num+2;i++) vp[i] = 0;
return 1;
}
}
for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
vp[num] = 0;
vp[num+1] = 0;
return 1;
}
#else
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
{ return 0; }
#endif /* OPENSSL_BN_ASM_MONT */
#endif
#endif /* !BN_MUL_COMBA */

Computing file changes ...