Revision 63ef0db60f7b9fc0c2bcabdc7e2bd133784ddd60 authored by Adam Langley on 13 December 2014, 20:13:10 UTC, committed by Matt Caswell on 16 December 2014, 14:46:57 UTC
The client_version needs to be preserved for the RSA key exchange. This change also means that renegotiation will, like TLS, repeat the old client_version rather than advertise only the final version. (Either way, version change on renego is not allowed.) This is necessary in TLS to work around an SChannel bug, but it's not strictly necessary in DTLS. (From BoringSSL) Reviewed-by: Emilia Käsper <emilia@openssl.org> (cherry picked from commit ec1af3c4195c1dfecdd9dc7458850ab1b8b951e0)
1 parent f74f5c8
ec2_mult.c
/* crypto/ec/ec2_mult.c */
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed
* to the OpenSSL project.
*
* The ECC Code is licensed pursuant to the OpenSSL open source
* license provided below.
*
* The software is originally written by Sheueling Chang Shantz and
* Douglas Stebila of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <openssl/err.h>
#include "ec_lcl.h"
#ifndef OPENSSL_NO_EC2M
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
* coordinates.
* Uses algorithm Mdouble in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
* modified to not require precomputation of c=b^{2^{m-1}}.
*/
static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
{
BIGNUM *t1;
int ret = 0;
/* Since Mdouble is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
t1 = BN_CTX_get(ctx);
if (t1 == NULL) goto err;
if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;
if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;
if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;
if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;
if (!BN_GF2m_add(x, x, t1)) goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
* projective coordinates.
* Uses algorithm Madd in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
*/
static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
{
BIGNUM *t1, *t2;
int ret = 0;
/* Since Madd is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
t1 = BN_CTX_get(ctx);
t2 = BN_CTX_get(ctx);
if (t2 == NULL) goto err;
if (!BN_copy(t1, x)) goto err;
if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
if (!BN_GF2m_add(z1, z1, x1)) goto err;
if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
if (!BN_GF2m_add(x1, x1, t2)) goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
* using Montgomery point multiplication algorithm Mxy() in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
* Returns:
* 0 on error
* 1 if return value should be the point at infinity
* 2 otherwise
*/
static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
{
BIGNUM *t3, *t4, *t5;
int ret = 0;
if (BN_is_zero(z1))
{
BN_zero(x2);
BN_zero(z2);
return 1;
}
if (BN_is_zero(z2))
{
if (!BN_copy(x2, x)) return 0;
if (!BN_GF2m_add(z2, x, y)) return 0;
return 2;
}
/* Since Mxy is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
t3 = BN_CTX_get(ctx);
t4 = BN_CTX_get(ctx);
t5 = BN_CTX_get(ctx);
if (t5 == NULL) goto err;
if (!BN_one(t5)) goto err;
if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
if (!BN_GF2m_add(z1, z1, x1)) goto err;
if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
if (!BN_GF2m_add(z2, z2, x2)) goto err;
if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
if (!BN_GF2m_add(t4, t4, y)) goto err;
if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
if (!BN_GF2m_add(t4, t4, z2)) goto err;
if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
if (!BN_GF2m_add(z2, x2, x)) goto err;
if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
if (!BN_GF2m_add(z2, z2, y)) goto err;
ret = 2;
err:
BN_CTX_end(ctx);
return ret;
}
/* Computes scalar*point and stores the result in r.
* point can not equal r.
* Uses a modified algorithm 2P of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation" (CHES '99, LNCS 1717).
*
* To protect against side-channel attack the function uses constant time swap,
* avoiding conditional branches.
*/
static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
const EC_POINT *point, BN_CTX *ctx)
{
BIGNUM *x1, *x2, *z1, *z2;
int ret = 0, i;
BN_ULONG mask,word;
if (r == point)
{
ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
return 0;
}
/* if result should be point at infinity */
if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
EC_POINT_is_at_infinity(group, point))
{
return EC_POINT_set_to_infinity(group, r);
}
/* only support affine coordinates */
if (!point->Z_is_one) return 0;
/* Since point_multiply is static we can guarantee that ctx != NULL. */
BN_CTX_start(ctx);
x1 = BN_CTX_get(ctx);
z1 = BN_CTX_get(ctx);
if (z1 == NULL) goto err;
x2 = &r->X;
z2 = &r->Y;
bn_wexpand(x1, group->field.top);
bn_wexpand(z1, group->field.top);
bn_wexpand(x2, group->field.top);
bn_wexpand(z2, group->field.top);
if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
if (!BN_one(z1)) goto err; /* z1 = 1 */
if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
/* find top most bit and go one past it */
i = scalar->top - 1;
mask = BN_TBIT;
word = scalar->d[i];
while (!(word & mask)) mask >>= 1;
mask >>= 1;
/* if top most bit was at word break, go to next word */
if (!mask)
{
i--;
mask = BN_TBIT;
}
for (; i >= 0; i--)
{
word = scalar->d[i];
while (mask)
{
BN_consttime_swap(word & mask, x1, x2, group->field.top);
BN_consttime_swap(word & mask, z1, z2, group->field.top);
if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
BN_consttime_swap(word & mask, x1, x2, group->field.top);
BN_consttime_swap(word & mask, z1, z2, group->field.top);
mask >>= 1;
}
mask = BN_TBIT;
}
/* convert out of "projective" coordinates */
i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
if (i == 0) goto err;
else if (i == 1)
{
if (!EC_POINT_set_to_infinity(group, r)) goto err;
}
else
{
if (!BN_one(&r->Z)) goto err;
r->Z_is_one = 1;
}
/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
BN_set_negative(&r->X, 0);
BN_set_negative(&r->Y, 0);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/* Computes the sum
* scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
* gracefully ignoring NULL scalar values.
*/
int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
int ret = 0;
size_t i;
EC_POINT *p=NULL;
EC_POINT *acc = NULL;
if (ctx == NULL)
{
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
/* This implementation is more efficient than the wNAF implementation for 2
* or fewer points. Use the ec_wNAF_mul implementation for 3 or more points,
* or if we can perform a fast multiplication based on precomputation.
*/
if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))
{
ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
goto err;
}
if ((p = EC_POINT_new(group)) == NULL) goto err;
if ((acc = EC_POINT_new(group)) == NULL) goto err;
if (!EC_POINT_set_to_infinity(group, acc)) goto err;
if (scalar)
{
if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;
if (BN_is_negative(scalar))
if (!group->meth->invert(group, p, ctx)) goto err;
if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
}
for (i = 0; i < num; i++)
{
if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;
if (BN_is_negative(scalars[i]))
if (!group->meth->invert(group, p, ctx)) goto err;
if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
}
if (!EC_POINT_copy(r, acc)) goto err;
ret = 1;
err:
if (p) EC_POINT_free(p);
if (acc) EC_POINT_free(acc);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
/* Precomputation for point multiplication: fall back to wNAF methods
* because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
{
return ec_wNAF_precompute_mult(group, ctx);
}
int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
{
return ec_wNAF_have_precompute_mult(group);
}
#endif

Computing file changes ...