Revision 85eb4f303f4fc9eb8edfd9be0f6f67d435af9972 authored by ha1215 on 23 April 2024, 01:54:36 UTC, committed by Tomas Mraz on 09 September 2024, 07:23:38 UTC
The possessive form of "Windows" has been updated from "Windows's" to "Windows'". The function call "a poll(2) call" has been specified as "a poll(2) system call" for clarity. The phrase "and supposed" has been corrected to "and was supposed" to improve sentence structure. The phrase "However Microsoft has" now includes a comma, revised to "However, Microsoft has" to enhance readability. The statement "Supporting these is a pain" has been adjusted to "Supporting these can be a pain" to better convey potential variability in user experience. CLA: trivial Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Yang <kaishen.yy@antfin.com> Reviewed-by: Neil Horman <nhorman@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/24242)
1 parent a5cd06f
provider.c
/*
* Copyright 2023-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* https://www.openssl.org/source/license.html
* or in the file LICENSE in the source distribution.
*/
#include <string.h>
#include <openssl/types.h>
#include <openssl/crypto.h>
#include <openssl/core_names.h>
#include <openssl/kdf.h>
#include <openssl/evp.h>
#include <openssl/provider.h>
#include "fuzzer.h"
#define DEFINE_ALGORITHMS(name, evp) DEFINE_STACK_OF(evp) \
static int cmp_##evp(const evp *const *a, const evp *const *b); \
static void collect_##evp(evp *obj, void *stack); \
static void init_##name(OSSL_LIB_CTX *libctx); \
static void cleanup_##name(void); \
static STACK_OF(evp) *name##_collection; \
static int cmp_##evp(const evp *const *a, const evp *const *b) \
{ \
return strcmp(OSSL_PROVIDER_get0_name(evp##_get0_provider(*a)), \
OSSL_PROVIDER_get0_name(evp##_get0_provider(*b))); \
} \
static void collect_##evp(evp *obj, void *stack) \
{ \
STACK_OF(evp) *obj_stack = stack; \
\
if (sk_##evp##_push(obj_stack, obj) > 0) \
evp##_up_ref(obj); \
} \
static void init_##name(OSSL_LIB_CTX *libctx) \
{ \
name##_collection = sk_##evp##_new(cmp_##evp); \
evp##_do_all_provided(libctx, collect_##evp, name##_collection); \
} \
static void cleanup_##name(void) \
{ \
sk_##evp##_pop_free(name##_collection, evp##_free); \
}
DEFINE_ALGORITHMS(digests, EVP_MD)
DEFINE_ALGORITHMS(kdf, EVP_KDF)
DEFINE_ALGORITHMS(cipher, EVP_CIPHER)
DEFINE_ALGORITHMS(kem, EVP_KEM)
DEFINE_ALGORITHMS(keyexch, EVP_KEYEXCH)
DEFINE_ALGORITHMS(rand, EVP_RAND)
DEFINE_ALGORITHMS(mac, EVP_MAC)
DEFINE_ALGORITHMS(keymgmt, EVP_KEYMGMT)
DEFINE_ALGORITHMS(signature, EVP_SIGNATURE)
DEFINE_ALGORITHMS(asym_ciphers, EVP_ASYM_CIPHER)
static OSSL_LIB_CTX *libctx = NULL;
int FuzzerInitialize(int *argc, char ***argv)
{
libctx = OSSL_LIB_CTX_new();
if (libctx == NULL)
return 0;
init_digests(libctx);
init_kdf(libctx);
init_cipher(libctx);
init_kem(libctx);
init_keyexch(libctx);
init_rand(libctx);
init_mac(libctx);
init_keymgmt(libctx);
init_signature(libctx);
init_asym_ciphers(libctx);
return 1;
}
void FuzzerCleanup(void)
{
cleanup_digests();
cleanup_kdf();
cleanup_cipher();
cleanup_kem();
cleanup_keyexch();
cleanup_rand();
cleanup_mac();
cleanup_keymgmt();
cleanup_signature();
cleanup_asym_ciphers();
OSSL_LIB_CTX_free(libctx);
}
static int read_uint(const uint8_t **buf, size_t *len, uint64_t **res)
{
int r = 1;
if (*len < sizeof(uint64_t)) {
r = 0;
goto end;
}
*res = OPENSSL_malloc(sizeof(uint64_t));
**res = (uint64_t) **buf;
*buf += sizeof(uint64_t);
*len -= sizeof(uint64_t);
end:
return r;
}
static int read_int(const uint8_t **buf, size_t *len, int64_t **res)
{
int r = 1;
if (*len < sizeof(int64_t)) {
r = 0;
goto end;
}
*res = OPENSSL_malloc(sizeof(int64_t));
**res = (int64_t) **buf;
*buf += sizeof(int64_t);
*len -= sizeof(int64_t);
end:
return r;
}
static int read_double(const uint8_t **buf, size_t *len, double **res)
{
int r = 1;
if (*len < sizeof(double)) {
r = 0;
goto end;
}
*res = OPENSSL_malloc(sizeof(double));
**res = (double) **buf;
*buf += sizeof(double);
*len -= sizeof(double);
end:
return r;
}
static int read_utf8_string(const uint8_t **buf, size_t *len, char **res)
{
size_t found_len;
int r;
found_len = OPENSSL_strnlen((const char *) *buf, *len);
if (found_len == *len) {
r = -1;
goto end;
}
found_len++; /* skip over the \0 byte */
r = (int) found_len;
*res = (char *) *buf;
*len -= found_len;
*buf = *buf + found_len; /* continue after the \0 byte */
end:
return r;
}
static int read_utf8_ptr(const uint8_t **buf, size_t *len, char **res)
{
if (*len > 0 && **buf == 0xFF) {
/* represent NULL somehow */
*res = NULL;
*buf += 1;
*len -= 1;
return 0;
}
return read_utf8_string(buf, len, res);
}
static int read_octet_string(const uint8_t **buf, size_t *len, char **res)
{
int r;
size_t i;
const uint8_t *ptr = *buf;
int found = 0;
for (i = 0; i < *len; ++i) {
if (*ptr == 0xFF &&
(i + 1 < *len && *(ptr + 1) == 0xFF)) {
ptr++;
found = 1;
break;
}
ptr++;
}
if (!found) {
r = -1;
goto end;
}
*res = (char *) *buf;
r = ptr - *buf;
*len -= r;
*buf = ptr;
end:
return r;
}
static int read_octet_ptr(const uint8_t **buf, size_t *len, char **res)
{
/* TODO: This representation could need an improvement potentially. */
if (*len > 1 && **buf == 0xFF && *(*buf + 1) == 0xFF) {
/* represent NULL somehow */
*res = NULL;
*buf += 2;
*len -= 2;
return 0;
}
return read_octet_string(buf, len, res);
}
static char *DFLT_STR = "";
static char *DFLT_UTF8_PTR = NULL;
static char *DFLT_OCTET_STRING = "";
static char *DFLT_OCTET_PTR = NULL;
static int64_t ITERS = 1;
static uint64_t UITERS = 1;
static int64_t BLOCKSIZE = 8;
static uint64_t UBLOCKSIZE = 8;
static void free_params(OSSL_PARAM *param)
{
for (; param != NULL && param->key != NULL; param++) {
switch (param->data_type) {
case OSSL_PARAM_INTEGER:
case OSSL_PARAM_UNSIGNED_INTEGER:
case OSSL_PARAM_REAL:
if (param->data != NULL) {
OPENSSL_free(param->data);
}
break;
}
}
}
static OSSL_PARAM *fuzz_params(OSSL_PARAM *param, const uint8_t **buf, size_t *len)
{
OSSL_PARAM *p;
OSSL_PARAM *fuzzed_parameters;
int p_num = 0;
for (p = param; p != NULL && p->key != NULL; p++)
p_num++;
fuzzed_parameters = OPENSSL_zalloc(sizeof(OSSL_PARAM) *(p_num + 1));
p = fuzzed_parameters;
for (; param != NULL && param->key != NULL; param++) {
int64_t *use_param = NULL;
int64_t *p_value_int = NULL;
uint64_t *p_value_uint = NULL;
double *p_value_double = NULL;
char *p_value_utf8_str = DFLT_STR;
char *p_value_octet_str = DFLT_OCTET_STRING;
char *p_value_utf8_ptr = DFLT_UTF8_PTR;
char *p_value_octet_ptr = DFLT_OCTET_PTR;
int data_len = 0;
if (!read_int(buf, len, &use_param)) {
use_param = OPENSSL_malloc(sizeof(uint64_t));
*use_param = 0;
}
switch (param->data_type) {
case OSSL_PARAM_INTEGER:
if (strcmp(param->key, OSSL_KDF_PARAM_ITER) == 0) {
p_value_int = OPENSSL_malloc(sizeof(ITERS));
*p_value_int = ITERS;
} else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_N) == 0) {
p_value_int = OPENSSL_malloc(sizeof(ITERS));
*p_value_int = ITERS;
} else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_R) == 0) {
p_value_int = OPENSSL_malloc(sizeof(BLOCKSIZE));
*p_value_int = BLOCKSIZE;
} else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_P) == 0) {
p_value_int = OPENSSL_malloc(sizeof(BLOCKSIZE));
*p_value_int = BLOCKSIZE;
} else if (!*use_param || !read_int(buf, len, &p_value_int)) {
p_value_int = OPENSSL_malloc(sizeof(int64_t));
*p_value_int = 0;
}
*p = *param;
p->data = p_value_int;
p++;
break;
case OSSL_PARAM_UNSIGNED_INTEGER:
if (strcmp(param->key, OSSL_KDF_PARAM_ITER) == 0) {
p_value_uint = OPENSSL_malloc(sizeof(UITERS));
*p_value_uint = UITERS;
} else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_N) == 0) {
p_value_uint = OPENSSL_malloc(sizeof(UITERS));
*p_value_uint = UITERS;
} else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_R) == 0) {
p_value_uint = OPENSSL_malloc(sizeof(UBLOCKSIZE));
*p_value_uint = UBLOCKSIZE;
} else if (strcmp(param->key, OSSL_KDF_PARAM_SCRYPT_P) == 0) {
p_value_uint = OPENSSL_malloc(sizeof(UBLOCKSIZE));
*p_value_uint = UBLOCKSIZE;
} else if (!*use_param || !read_uint(buf, len, &p_value_uint)) {
p_value_uint = OPENSSL_malloc(sizeof(uint64_t));
*p_value_uint = 0;
}
*p = *param;
p->data = p_value_uint;
p++;
break;
case OSSL_PARAM_REAL:
if (!*use_param || !read_double(buf, len, &p_value_double)) {
p_value_double = OPENSSL_malloc(sizeof(double));
*p_value_double = 0;
}
*p = *param;
p->data = p_value_double;
p++;
break;
case OSSL_PARAM_UTF8_STRING:
if (*use_param && (data_len = read_utf8_string(buf, len, &p_value_utf8_str)) < 0)
data_len = 0;
*p = *param;
p->data = p_value_utf8_str;
p->data_size = data_len;
p++;
break;
case OSSL_PARAM_OCTET_STRING:
if (*use_param && (data_len = read_octet_string(buf, len, &p_value_octet_str)) < 0)
data_len = 0;
*p = *param;
p->data = p_value_octet_str;
p->data_size = data_len;
p++;
break;
case OSSL_PARAM_UTF8_PTR:
if (*use_param && (data_len = read_utf8_ptr(buf, len, &p_value_utf8_ptr)) < 0)
data_len = 0;
*p = *param;
p->data = p_value_utf8_ptr;
p->data_size = data_len;
p++;
break;
case OSSL_PARAM_OCTET_PTR:
if (*use_param && (data_len = read_octet_ptr(buf, len, &p_value_octet_ptr)) < 0)
data_len = 0;
*p = *param;
p->data = p_value_octet_ptr;
p->data_size = data_len;
p++;
break;
default:
break;
}
OPENSSL_free(use_param);
}
return fuzzed_parameters;
}
static int do_evp_cipher(const EVP_CIPHER *evp_cipher, const OSSL_PARAM param[])
{
unsigned char outbuf[1024];
int outlen, tmplen;
unsigned char key[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
unsigned char iv[] = {1, 2, 3, 4, 5, 6, 7, 8};
const char intext[] = "text";
EVP_CIPHER_CTX *ctx;
ctx = EVP_CIPHER_CTX_new();
if (!EVP_CIPHER_CTX_set_params(ctx, param)) {
EVP_CIPHER_CTX_free(ctx);
return 0;
}
if (!EVP_EncryptInit_ex2(ctx, evp_cipher, key, iv, NULL)) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;
}
if (!EVP_EncryptUpdate(ctx, outbuf, &outlen, (const unsigned char *) intext, strlen(intext))) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;
}
/*
* Buffer passed to EVP_EncryptFinal() must be after data just
* encrypted to avoid overwriting it.
*/
if (!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen)) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;
}
outlen += tmplen;
EVP_CIPHER_CTX_free(ctx);
return 1;
}
static int do_evp_kdf(EVP_KDF *evp_kdf, const OSSL_PARAM params[])
{
int r = 1;
EVP_KDF_CTX *kctx = NULL;
unsigned char derived[32];
kctx = EVP_KDF_CTX_new(evp_kdf);
if (kctx == NULL) {
r = 0;
goto end;
}
if (EVP_KDF_CTX_set_params(kctx, params) <= 0) {
r = 0;
goto end;
}
if (EVP_KDF_derive(kctx, derived, sizeof(derived), NULL) <= 0) {
r = 0;
goto end;
}
end:
EVP_KDF_CTX_free(kctx);
return r;
}
static int do_evp_mac(EVP_MAC *evp_mac, const OSSL_PARAM params[])
{
int r = 1;
const char *key = "mac_key";
char text[] = "Some Crypto Text";
EVP_MAC_CTX *ctx = NULL;
unsigned char buf[4096];
size_t final_l;
if ((ctx = EVP_MAC_CTX_new(evp_mac)) == NULL
|| !EVP_MAC_init(ctx, (const unsigned char *) key, strlen(key),
params)) {
r = 0;
goto end;
}
if (EVP_MAC_CTX_set_params(ctx, params) <= 0) {
r = 0;
goto end;
}
if (!EVP_MAC_update(ctx, (unsigned char *) text, sizeof(text))) {
r = 0;
goto end;
}
if (!EVP_MAC_final(ctx, buf, &final_l, sizeof(buf))) {
r = 0;
goto end;
}
end:
EVP_MAC_CTX_free(ctx);
return r;
}
static int do_evp_rand(EVP_RAND *evp_rand, const OSSL_PARAM params[])
{
int r = 1;
EVP_RAND_CTX *ctx = NULL;
unsigned char buf[4096];
if (!(ctx = EVP_RAND_CTX_new(evp_rand, NULL))) {
r = 0;
goto end;
}
if (EVP_RAND_CTX_set_params(ctx, params) <= 0) {
r = 0;
goto end;
}
if (!EVP_RAND_generate(ctx, buf, sizeof(buf), 0, 0, NULL, 0)) {
r = 0;
goto end;
}
if (!EVP_RAND_reseed(ctx, 0, 0, 0, NULL, 0)) {
r = 0;
goto end;
}
end:
EVP_RAND_CTX_free(ctx);
return r;
}
static int do_evp_sig(EVP_SIGNATURE *evp_sig, const OSSL_PARAM params[])
{
return 0;
}
static int do_evp_asym_cipher(EVP_ASYM_CIPHER *evp_asym_cipher, const OSSL_PARAM params[])
{
return 0;
}
static int do_evp_kem(EVP_KEM *evp_kem, const OSSL_PARAM params[])
{
return 0;
}
static int do_evp_key_exch(EVP_KEYEXCH *evp_kdf, const OSSL_PARAM params[])
{
return 0;
}
static int do_evp_md(EVP_MD *evp_md, const OSSL_PARAM params[])
{
int r = 1;
unsigned char md_value[EVP_MAX_MD_SIZE];
unsigned int md_len;
EVP_MD_CTX *mdctx = NULL;
if (!(mdctx = EVP_MD_CTX_new())) {
r = 0;
goto end;
}
if (!EVP_MD_CTX_set_params(mdctx, params)) {
r = 0;
goto end;
}
if (!EVP_DigestInit_ex2(mdctx, evp_md, NULL)) {
r = 0;
goto end;
}
if (!EVP_DigestUpdate(mdctx, "Test", strlen("Test"))) {
r = 0;
goto end;
}
if (!EVP_DigestFinal_ex(mdctx, md_value, &md_len)) {
r = 0;
goto end;
}
end:
EVP_MD_CTX_free(mdctx);
return r;
}
#define EVP_FUZZ(source, evp, f) \
do { \
evp *alg = sk_##evp##_value(source, *algorithm % sk_##evp##_num(source)); \
OSSL_PARAM *fuzzed_params; \
\
if (alg == NULL) \
break; \
fuzzed_params = fuzz_params((OSSL_PARAM*) evp##_settable_ctx_params(alg), &buf, &len); \
if (fuzzed_params != NULL) \
f(alg, fuzzed_params); \
free_params(fuzzed_params); \
OSSL_PARAM_free(fuzzed_params); \
} while (0);
int FuzzerTestOneInput(const uint8_t *buf, size_t len)
{
int r = 1;
uint64_t *operation = NULL;
int64_t *algorithm = NULL;
if (!read_uint(&buf, &len, &operation)) {
r = 0;
goto end;
}
if (!read_int(&buf, &len, &algorithm)) {
r = 0;
goto end;
}
switch (*operation % 10) {
case 0:
EVP_FUZZ(digests_collection, EVP_MD, do_evp_md);
break;
case 1:
EVP_FUZZ(cipher_collection, EVP_CIPHER, do_evp_cipher);
break;
case 2:
EVP_FUZZ(kdf_collection, EVP_KDF, do_evp_kdf);
break;
case 3:
EVP_FUZZ(mac_collection, EVP_MAC, do_evp_mac);
break;
case 4:
EVP_FUZZ(kem_collection, EVP_KEM, do_evp_kem);
break;
case 5:
EVP_FUZZ(rand_collection, EVP_RAND, do_evp_rand);
break;
case 6:
EVP_FUZZ(asym_ciphers_collection, EVP_ASYM_CIPHER, do_evp_asym_cipher);
break;
case 7:
EVP_FUZZ(signature_collection, EVP_SIGNATURE, do_evp_sig);
break;
case 8:
EVP_FUZZ(keyexch_collection, EVP_KEYEXCH, do_evp_key_exch);
break;
case 9:
/*
Implement and call:
static int do_evp_keymgmt(EVP_KEYMGMT *evp_kdf, const OSSL_PARAM params[])
{
return 0;
}
*/
/* not yet implemented */
break;
default:
r = 0;
goto end;
}
end:
OPENSSL_free(operation);
OPENSSL_free(algorithm);
return r;
}

Computing file changes ...