Skip to main content
  • Home
  • login
  • Browse the archive

    swh mirror partner logo
swh logo
SoftwareHeritage
Software
Heritage
Mirror
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision acee7d68e1037d18f34d03bcd70af6b1b6e48299 authored by Matt Caswell on 11 October 2023, 09:43:58 UTC, committed by Matt Caswell on 23 October 2023, 09:08:12 UTC
Updates to the quic client fuzzer
Handle retryable errors from SSL_read(). Also ensure the underlying BIO
handles the destination address capability.

Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/22368)
1 parent 5415383
  • Files
  • Changes
  • 2f864c2
  • /
  • doc
  • /
  • man3
  • /
  • ECDSA_sign.pod
Raw File
Cook and download a directory from the Software Heritage Vault

You have requested the cooking of the directory with identifier None into a standard tar.gz archive.

Are you sure you want to continue ?

Download a directory from the Software Heritage Vault

You have requested the download of the directory with identifier None as a standard tar.gz archive.

Are you sure you want to continue ?

Cook and download a revision from the Software Heritage Vault

You have requested the cooking of the history heading to revision with identifier swh:1:rev:acee7d68e1037d18f34d03bcd70af6b1b6e48299 into a bare git archive.

Are you sure you want to continue ?

Download a revision from the Software Heritage Vault

You have requested the download of the history heading to revision with identifier swh:1:rev:acee7d68e1037d18f34d03bcd70af6b1b6e48299 as a bare git archive.

Are you sure you want to continue ?

Invalid Email !

The provided email is not well-formed.

Download link has expired

The requested archive is no longer available for download from the Software Heritage Vault.

Do you want to cook it again ?

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • content
revision badge
swh:1:rev:acee7d68e1037d18f34d03bcd70af6b1b6e48299
content badge Iframe embedding
swh:1:cnt:7e5646665335a0f14024abfd526ac73fde53d7f6
ECDSA_sign.pod
=pod

=head1 NAME

ECDSA_size, ECDSA_sign, ECDSA_do_sign,
ECDSA_verify, ECDSA_do_verify, ECDSA_sign_setup, ECDSA_sign_ex,
ECDSA_do_sign_ex - deprecated low-level elliptic curve digital signature algorithm
(ECDSA) functions

=head1 SYNOPSIS

 #include <openssl/ecdsa.h>

The following functions have been deprecated since OpenSSL 3.0, and can be
hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
see L<openssl_user_macros(7)>:

 int ECDSA_size(const EC_KEY *eckey);

 int ECDSA_sign(int type, const unsigned char *dgst, int dgstlen,
                unsigned char *sig, unsigned int *siglen, EC_KEY *eckey);
 ECDSA_SIG *ECDSA_do_sign(const unsigned char *dgst, int dgst_len,
                          EC_KEY *eckey);

 int ECDSA_verify(int type, const unsigned char *dgst, int dgstlen,
                  const unsigned char *sig, int siglen, EC_KEY *eckey);
 int ECDSA_do_verify(const unsigned char *dgst, int dgst_len,
                     const ECDSA_SIG *sig, EC_KEY* eckey);

 ECDSA_SIG *ECDSA_do_sign_ex(const unsigned char *dgst, int dgstlen,
                             const BIGNUM *kinv, const BIGNUM *rp,
                             EC_KEY *eckey);
 int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinv, BIGNUM **rp);
 int ECDSA_sign_ex(int type, const unsigned char *dgst, int dgstlen,
                   unsigned char *sig, unsigned int *siglen,
                   const BIGNUM *kinv, const BIGNUM *rp, EC_KEY *eckey);

=head1 DESCRIPTION

See L<ECDSA_SIG_new(3)> for a description of the B<ECDSA_SIG> object.

See L<i2d_ECDSA_SIG(3)> and L<d2i_ECDSA_SIG(3)> for information about encoding
and decoding ECDSA signatures to/from DER.

All of the functions described below are deprecated. Applications should
use the higher level B<EVP> interface such as L<EVP_DigestSignInit(3)>
or L<EVP_DigestVerifyInit(3)> instead.

ECDSA_size() returns the maximum length of a DER encoded ECDSA signature
created with the private EC key I<eckey>. To obtain the actual signature
size use L<EVP_PKEY_sign(3)> with a NULL I<sig> parameter.

ECDSA_sign() computes a digital signature of the I<dgstlen> bytes hash value
I<dgst> using the private EC key I<eckey>. The DER encoded signatures is
stored in I<sig> and its length is returned in I<sig_len>. Note: I<sig> must
point to ECDSA_size(eckey) bytes of memory. The parameter I<type> is currently
ignored. ECDSA_sign() is wrapper function for ECDSA_sign_ex() with I<kinv>
and I<rp> set to NULL.

ECDSA_do_sign() is similar to ECDSA_sign() except the signature is returned
as a newly allocated B<ECDSA_SIG> structure (or NULL on error). ECDSA_do_sign()
is a wrapper function for ECDSA_do_sign_ex() with I<kinv> and I<rp> set to
NULL.

ECDSA_verify() verifies that the signature in I<sig> of size I<siglen> is a
valid ECDSA signature of the hash value I<dgst> of size I<dgstlen> using the
public key I<eckey>.  The parameter I<type> is ignored.

ECDSA_do_verify() is similar to ECDSA_verify() except the signature is
presented in the form of a pointer to an B<ECDSA_SIG> structure.

The remaining functions utilise the internal I<kinv> and I<r> values used
during signature computation. Most applications will never need to call these
and some external ECDSA ENGINE implementations may not support them at all if
either I<kinv> or I<r> is not NULL.

ECDSA_sign_setup() may be used to precompute parts of the signing operation.
I<eckey> is the private EC key and I<ctx> is a pointer to B<BN_CTX> structure
(or NULL). The precomputed values or returned in I<kinv> and I<rp> and can be
used in a later call to ECDSA_sign_ex() or ECDSA_do_sign_ex().

ECDSA_sign_ex() computes a digital signature of the I<dgstlen> bytes hash value
I<dgst> using the private EC key I<eckey> and the optional pre-computed values
I<kinv> and I<rp>. The DER encoded signature is stored in I<sig> and its
length is returned in I<sig_len>. Note: I<sig> must point to ECDSA_size(eckey)
bytes of memory. The parameter I<type> is ignored.

ECDSA_do_sign_ex() is similar to ECDSA_sign_ex() except the signature is
returned as a newly allocated B<ECDSA_SIG> structure (or NULL on error).

=head1 RETURN VALUES

ECDSA_size() returns the maximum length signature or 0 on error.

ECDSA_sign(), ECDSA_sign_ex() and ECDSA_sign_setup() return 1 if successful
or 0 on error.

ECDSA_do_sign() and ECDSA_do_sign_ex() return a pointer to an allocated
B<ECDSA_SIG> structure or NULL on error.

ECDSA_verify() and ECDSA_do_verify() return 1 for a valid
signature, 0 for an invalid signature and -1 on error.
The error codes can be obtained by L<ERR_get_error(3)>.

=head1 EXAMPLES

Creating an ECDSA signature of a given SHA-256 hash value using the
named curve prime256v1 (aka P-256).
This example uses deprecated functionality. See L</DESCRIPTION>.

First step: create an EC_KEY object (note: this part is B<not> ECDSA
specific)

 int ret;
 ECDSA_SIG *sig;
 EC_KEY *eckey;

 eckey = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
 if (eckey == NULL)
     /* error */
 if (EC_KEY_generate_key(eckey) == 0)
     /* error */

Second step: compute the ECDSA signature of a SHA-256 hash value
using ECDSA_do_sign():

 sig = ECDSA_do_sign(digest, 32, eckey);
 if (sig == NULL)
     /* error */

or using ECDSA_sign():

 unsigned char *buffer, *pp;
 int buf_len;

 buf_len = ECDSA_size(eckey);
 buffer = OPENSSL_malloc(buf_len);
 pp = buffer;
 if (ECDSA_sign(0, dgst, dgstlen, pp, &buf_len, eckey) == 0)
     /* error */

Third step: verify the created ECDSA signature using ECDSA_do_verify():

 ret = ECDSA_do_verify(digest, 32, sig, eckey);

or using ECDSA_verify():

 ret = ECDSA_verify(0, digest, 32, buffer, buf_len, eckey);

and finally evaluate the return value:

 if (ret == 1)
     /* signature ok */
 else if (ret == 0)
     /* incorrect signature */
 else
     /* error */

=head1 CONFORMING TO

ANSI X9.62, US Federal Information Processing Standard FIPS186-2
(Digital Signature Standard, DSS)

=head1 SEE ALSO

L<EC_KEY_new(3)>,
L<EVP_DigestSignInit(3)>,
L<EVP_DigestVerifyInit(3)>,
L<EVP_PKEY_sign(3)>
L<i2d_ECDSA_SIG(3)>,
L<d2i_ECDSA_SIG(3)>

=head1 HISTORY

All functionality described here was deprecated in OpenSSL 3.0.

=head1 COPYRIGHT

Copyright 2004-2022 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.

=cut
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

ENEA — Copyright (C), ENEA. License: GNU AGPLv3+.
Legal notes  ::  JavaScript license information ::  Web API

back to top