Revision b095884a58876ccd3e65f620b7f80d61b4bce687 authored by Matt Caswell on 07 January 2015, 14:18:13 UTC, committed by Matt Caswell on 08 January 2015, 14:14:56 UTC
ssl3_setup_buffers or pqueue_insert fail. The former will fail if there is a malloc failure, whilst the latter will fail if attempting to add a duplicate record to the queue. This should never happen because duplicate records should be detected and dropped before any attempt to add them to the queue. Unfortunately records that arrive that are for the next epoch are not being recorded correctly, and therefore replays are not being detected. Additionally, these "should not happen" failures that can occur in dtls1_buffer_record are not being treated as fatal and therefore an attacker could exploit this by sending repeated replay records for the next epoch, eventually causing a DoS through memory exhaustion. Thanks to Chris Mueller for reporting this issue and providing initial analysis and a patch. Further analysis and the final patch was performed by Matt Caswell from the OpenSSL development team. CVE-2015-0206 Reviewed-by: Dr Stephen Henson <steve@openssl.org> (cherry picked from commit 652ff0f4796eecd8729b4690f2076d1c7ccb2862)
1 parent f7fe3d2
d1_lib.c
/* ssl/d1_lib.c */
/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#define USE_SOCKETS
#include <openssl/objects.h>
#include "ssl_locl.h"
#if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS)
#include <sys/timeb.h>
#endif
static void get_current_time(struct timeval *t);
const char dtls1_version_str[]="DTLSv1" OPENSSL_VERSION_PTEXT;
int dtls1_listen(SSL *s, struct sockaddr *client);
SSL3_ENC_METHOD DTLSv1_enc_data={
dtls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS1_FINISH_MAC_LENGTH,
tls1_cert_verify_mac,
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
};
long dtls1_default_timeout(void)
{
/* 2 hours, the 24 hours mentioned in the DTLSv1 spec
* is way too long for http, the cache would over fill */
return(60*60*2);
}
int dtls1_new(SSL *s)
{
DTLS1_STATE *d1;
if (!ssl3_new(s)) return(0);
if ((d1=OPENSSL_malloc(sizeof *d1)) == NULL) return (0);
memset(d1,0, sizeof *d1);
/* d1->handshake_epoch=0; */
d1->unprocessed_rcds.q=pqueue_new();
d1->processed_rcds.q=pqueue_new();
d1->buffered_messages = pqueue_new();
d1->sent_messages=pqueue_new();
d1->buffered_app_data.q=pqueue_new();
if ( s->server)
{
d1->cookie_len = sizeof(s->d1->cookie);
}
d1->link_mtu = 0;
d1->mtu = 0;
if( ! d1->unprocessed_rcds.q || ! d1->processed_rcds.q
|| ! d1->buffered_messages || ! d1->sent_messages || ! d1->buffered_app_data.q)
{
if ( d1->unprocessed_rcds.q) pqueue_free(d1->unprocessed_rcds.q);
if ( d1->processed_rcds.q) pqueue_free(d1->processed_rcds.q);
if ( d1->buffered_messages) pqueue_free(d1->buffered_messages);
if ( d1->sent_messages) pqueue_free(d1->sent_messages);
if ( d1->buffered_app_data.q) pqueue_free(d1->buffered_app_data.q);
OPENSSL_free(d1);
return (0);
}
s->d1=d1;
s->method->ssl_clear(s);
return(1);
}
static void dtls1_clear_queues(SSL *s)
{
pitem *item = NULL;
hm_fragment *frag = NULL;
DTLS1_RECORD_DATA *rdata;
while( (item = pqueue_pop(s->d1->unprocessed_rcds.q)) != NULL)
{
rdata = (DTLS1_RECORD_DATA *) item->data;
if (rdata->rbuf.buf)
{
OPENSSL_free(rdata->rbuf.buf);
}
OPENSSL_free(item->data);
pitem_free(item);
}
while( (item = pqueue_pop(s->d1->processed_rcds.q)) != NULL)
{
rdata = (DTLS1_RECORD_DATA *) item->data;
if (rdata->rbuf.buf)
{
OPENSSL_free(rdata->rbuf.buf);
}
OPENSSL_free(item->data);
pitem_free(item);
}
while( (item = pqueue_pop(s->d1->buffered_messages)) != NULL)
{
frag = (hm_fragment *)item->data;
dtls1_hm_fragment_free(frag);
pitem_free(item);
}
while ( (item = pqueue_pop(s->d1->sent_messages)) != NULL)
{
frag = (hm_fragment *)item->data;
dtls1_hm_fragment_free(frag);
pitem_free(item);
}
while ( (item = pqueue_pop(s->d1->buffered_app_data.q)) != NULL)
{
rdata = (DTLS1_RECORD_DATA *) item->data;
if (rdata->rbuf.buf)
{
OPENSSL_free(rdata->rbuf.buf);
}
OPENSSL_free(item->data);
pitem_free(item);
}
}
void dtls1_free(SSL *s)
{
ssl3_free(s);
dtls1_clear_queues(s);
pqueue_free(s->d1->unprocessed_rcds.q);
pqueue_free(s->d1->processed_rcds.q);
pqueue_free(s->d1->buffered_messages);
pqueue_free(s->d1->sent_messages);
pqueue_free(s->d1->buffered_app_data.q);
OPENSSL_free(s->d1);
s->d1 = NULL;
}
void dtls1_clear(SSL *s)
{
pqueue unprocessed_rcds;
pqueue processed_rcds;
pqueue buffered_messages;
pqueue sent_messages;
pqueue buffered_app_data;
unsigned int mtu;
unsigned int link_mtu;
if (s->d1)
{
unprocessed_rcds = s->d1->unprocessed_rcds.q;
processed_rcds = s->d1->processed_rcds.q;
buffered_messages = s->d1->buffered_messages;
sent_messages = s->d1->sent_messages;
buffered_app_data = s->d1->buffered_app_data.q;
mtu = s->d1->mtu;
link_mtu = s->d1->link_mtu;
dtls1_clear_queues(s);
memset(s->d1, 0, sizeof(*(s->d1)));
if (s->server)
{
s->d1->cookie_len = sizeof(s->d1->cookie);
}
if (SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)
{
s->d1->mtu = mtu;
s->d1->link_mtu = link_mtu;
}
s->d1->unprocessed_rcds.q = unprocessed_rcds;
s->d1->processed_rcds.q = processed_rcds;
s->d1->buffered_messages = buffered_messages;
s->d1->sent_messages = sent_messages;
s->d1->buffered_app_data.q = buffered_app_data;
}
ssl3_clear(s);
if (s->options & SSL_OP_CISCO_ANYCONNECT)
s->version=DTLS1_BAD_VER;
else
s->version=DTLS1_VERSION;
}
long dtls1_ctrl(SSL *s, int cmd, long larg, void *parg)
{
int ret=0;
switch (cmd)
{
case DTLS_CTRL_GET_TIMEOUT:
if (dtls1_get_timeout(s, (struct timeval*) parg) != NULL)
{
ret = 1;
}
break;
case DTLS_CTRL_HANDLE_TIMEOUT:
ret = dtls1_handle_timeout(s);
break;
case DTLS_CTRL_LISTEN:
ret = dtls1_listen(s, parg);
break;
case SSL_CTRL_CHECK_PROTO_VERSION:
/* For library-internal use; checks that the current protocol
* is the highest enabled version (according to s->ctx->method,
* as version negotiation may have changed s->method). */
#if DTLS_MAX_VERSION != DTLS1_VERSION
# error Code needs update for DTLS_method() support beyond DTLS1_VERSION.
#endif
/* Just one protocol version is supported so far;
* fail closed if the version is not as expected. */
return s->version == DTLS_MAX_VERSION;
case DTLS_CTRL_SET_LINK_MTU:
if (larg < (long)dtls1_link_min_mtu())
return 0;
s->d1->link_mtu = larg;
return 1;
case DTLS_CTRL_GET_LINK_MIN_MTU:
return (long)dtls1_link_min_mtu();
case SSL_CTRL_SET_MTU:
/*
* We may not have a BIO set yet so can't call dtls1_min_mtu()
* We'll have to make do with dtls1_link_min_mtu() and max overhead
*/
if (larg < (long)dtls1_link_min_mtu() - DTLS1_MAX_MTU_OVERHEAD)
return 0;
s->d1->mtu = larg;
return larg;
default:
ret = ssl3_ctrl(s, cmd, larg, parg);
break;
}
return(ret);
}
/*
* As it's impossible to use stream ciphers in "datagram" mode, this
* simple filter is designed to disengage them in DTLS. Unfortunately
* there is no universal way to identify stream SSL_CIPHER, so we have
* to explicitly list their SSL_* codes. Currently RC4 is the only one
* available, but if new ones emerge, they will have to be added...
*/
const SSL_CIPHER *dtls1_get_cipher(unsigned int u)
{
const SSL_CIPHER *ciph = ssl3_get_cipher(u);
if (ciph != NULL)
{
if (ciph->algorithm_enc == SSL_RC4)
return NULL;
}
return ciph;
}
void dtls1_start_timer(SSL *s)
{
/* If timer is not set, initialize duration with 1 second */
if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0)
{
s->d1->timeout_duration = 1;
}
/* Set timeout to current time */
get_current_time(&(s->d1->next_timeout));
/* Add duration to current time */
s->d1->next_timeout.tv_sec += s->d1->timeout_duration;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0, &(s->d1->next_timeout));
}
struct timeval* dtls1_get_timeout(SSL *s, struct timeval* timeleft)
{
struct timeval timenow;
/* If no timeout is set, just return NULL */
if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0)
{
return NULL;
}
/* Get current time */
get_current_time(&timenow);
/* If timer already expired, set remaining time to 0 */
if (s->d1->next_timeout.tv_sec < timenow.tv_sec ||
(s->d1->next_timeout.tv_sec == timenow.tv_sec &&
s->d1->next_timeout.tv_usec <= timenow.tv_usec))
{
memset(timeleft, 0, sizeof(struct timeval));
return timeleft;
}
/* Calculate time left until timer expires */
memcpy(timeleft, &(s->d1->next_timeout), sizeof(struct timeval));
timeleft->tv_sec -= timenow.tv_sec;
timeleft->tv_usec -= timenow.tv_usec;
if (timeleft->tv_usec < 0)
{
timeleft->tv_sec--;
timeleft->tv_usec += 1000000;
}
/* If remaining time is less than 15 ms, set it to 0
* to prevent issues because of small devergences with
* socket timeouts.
*/
if (timeleft->tv_sec == 0 && timeleft->tv_usec < 15000)
{
memset(timeleft, 0, sizeof(struct timeval));
}
return timeleft;
}
int dtls1_is_timer_expired(SSL *s)
{
struct timeval timeleft;
/* Get time left until timeout, return false if no timer running */
if (dtls1_get_timeout(s, &timeleft) == NULL)
{
return 0;
}
/* Return false if timer is not expired yet */
if (timeleft.tv_sec > 0 || timeleft.tv_usec > 0)
{
return 0;
}
/* Timer expired, so return true */
return 1;
}
void dtls1_double_timeout(SSL *s)
{
s->d1->timeout_duration *= 2;
if (s->d1->timeout_duration > 60)
s->d1->timeout_duration = 60;
dtls1_start_timer(s);
}
void dtls1_stop_timer(SSL *s)
{
/* Reset everything */
memset(&(s->d1->timeout), 0, sizeof(struct dtls1_timeout_st));
memset(&(s->d1->next_timeout), 0, sizeof(struct timeval));
s->d1->timeout_duration = 1;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0, &(s->d1->next_timeout));
/* Clear retransmission buffer */
dtls1_clear_record_buffer(s);
}
int dtls1_check_timeout_num(SSL *s)
{
unsigned int mtu;
s->d1->timeout.num_alerts++;
/* Reduce MTU after 2 unsuccessful retransmissions */
if (s->d1->timeout.num_alerts > 2
&& !(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU))
{
mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_GET_FALLBACK_MTU, 0, NULL);
if(mtu < s->d1->mtu)
s->d1->mtu = mtu;
}
if (s->d1->timeout.num_alerts > DTLS1_TMO_ALERT_COUNT)
{
/* fail the connection, enough alerts have been sent */
SSLerr(SSL_F_DTLS1_CHECK_TIMEOUT_NUM,SSL_R_READ_TIMEOUT_EXPIRED);
return -1;
}
return 0;
}
int dtls1_handle_timeout(SSL *s)
{
/* if no timer is expired, don't do anything */
if (!dtls1_is_timer_expired(s))
{
return 0;
}
dtls1_double_timeout(s);
if (dtls1_check_timeout_num(s) < 0)
return -1;
s->d1->timeout.read_timeouts++;
if (s->d1->timeout.read_timeouts > DTLS1_TMO_READ_COUNT)
{
s->d1->timeout.read_timeouts = 1;
}
dtls1_start_timer(s);
return dtls1_retransmit_buffered_messages(s);
}
static void get_current_time(struct timeval *t)
{
#ifdef OPENSSL_SYS_WIN32
struct _timeb tb;
_ftime(&tb);
t->tv_sec = (long)tb.time;
t->tv_usec = (long)tb.millitm * 1000;
#elif defined(OPENSSL_SYS_VMS)
struct timeb tb;
ftime(&tb);
t->tv_sec = (long)tb.time;
t->tv_usec = (long)tb.millitm * 1000;
#else
gettimeofday(t, NULL);
#endif
}
int dtls1_listen(SSL *s, struct sockaddr *client)
{
int ret;
SSL_set_options(s, SSL_OP_COOKIE_EXCHANGE);
s->d1->listen = 1;
ret = SSL_accept(s);
if (ret <= 0) return ret;
(void) BIO_dgram_get_peer(SSL_get_rbio(s), client);
return 1;
}

Computing file changes ...