Skip to main content
  • Home
  • login
  • Browse the archive

    swh mirror partner logo
swh logo
SoftwareHeritage
Software
Heritage
Mirror
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision e37b7014f3f52124b787ca1b5b51b0111462a0ac authored by Tomas Mraz on 12 October 2018, 15:24:14 UTC, committed by Kurt Roeckx on 10 November 2018, 20:30:27 UTC
Unbreak SECLEVEL 3 regression causing it to not accept any ciphers.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Richard Levitte <levitte@openssl.org>
GH: #7391
(cherry picked from commit 75b68c9e4e8591a4ebe083cb207aeb121baf549f)
1 parent 98f6297
  • Files
  • Changes
  • 281f578
  • /
  • doc
  • /
  • man3
  • /
  • PEM_read.pod
Raw File
Cook and download a directory from the Software Heritage Vault

You have requested the cooking of the directory with identifier None into a standard tar.gz archive.

Are you sure you want to continue ?

Download a directory from the Software Heritage Vault

You have requested the download of the directory with identifier None as a standard tar.gz archive.

Are you sure you want to continue ?

Cook and download a revision from the Software Heritage Vault

You have requested the cooking of the history heading to revision with identifier swh:1:rev:e37b7014f3f52124b787ca1b5b51b0111462a0ac into a bare git archive.

Are you sure you want to continue ?

Download a revision from the Software Heritage Vault

You have requested the download of the history heading to revision with identifier swh:1:rev:e37b7014f3f52124b787ca1b5b51b0111462a0ac as a bare git archive.

Are you sure you want to continue ?

Invalid Email !

The provided email is not well-formed.

Download link has expired

The requested archive is no longer available for download from the Software Heritage Vault.

Do you want to cook it again ?

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • content
revision badge
swh:1:rev:e37b7014f3f52124b787ca1b5b51b0111462a0ac
content badge Iframe embedding
swh:1:cnt:3c777b5470aa2609730f4ffcc517daa352570356
PEM_read.pod
=pod

=head1 NAME

PEM_write, PEM_write_bio,
PEM_read, PEM_read_bio, PEM_do_header, PEM_get_EVP_CIPHER_INFO
- PEM encoding routines

=head1 SYNOPSIS

 #include <openssl/pem.h>

 int PEM_write(FILE *fp, const char *name, const char *header,
               const unsigned char *data, long len)
 int PEM_write_bio(BIO *bp, const char *name, const char *header,
                   const unsigned char *data, long len)

 int PEM_read(FILE *fp, char **name, char **header,
              unsigned char **data, long *len);
 int PEM_read_bio(BIO *bp, char **name, char **header,
                  unsigned char **data, long *len);

 int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cinfo);
 int PEM_do_header(EVP_CIPHER_INFO *cinfo, unsigned char *data, long *len,
                   pem_password_cb *cb, void *u);

=head1 DESCRIPTION

These functions read and write PEM-encoded objects, using the PEM
type B<name>, any additional B<header> information, and the raw
B<data> of length B<len>.

PEM is the term used for binary content encoding first defined in IETF
RFC 1421.  The content is a series of base64-encoded lines, surrounded
by begin/end markers each on their own line.  For example:

 -----BEGIN PRIVATE KEY-----
 MIICdg....
 ... bhTQ==
 -----END PRIVATE KEY-----

Optional header line(s) may appear after the begin line, and their
existence depends on the type of object being written or read.

PEM_write() writes to the file B<fp>, while PEM_write_bio() writes to
the BIO B<bp>.  The B<name> is the name to use in the marker, the
B<header> is the header value or NULL, and B<data> and B<len> specify
the data and its length.

The final B<data> buffer is typically an ASN.1 object which can be decoded with
the B<d2i> function appropriate to the type B<name>; see L<d2i_X509(3)>
for examples.

PEM_read() reads from the file B<fp>, while PEM_read_bio() reads
from the BIO B<bp>.
Both skip any non-PEM data that precedes the start of the next PEM object.
When an object is successfully retrieved, the type name from the "----BEGIN
<type>-----" is returned via the B<name> argument, any encapsulation headers
are returned in B<header> and the base64-decoded content and its length are
returned via B<data> and B<len> respectively.
The B<name>, B<header> and B<data> pointers are allocated via OPENSSL_malloc()
and should be freed by the caller via OPENSSL_free() when no longer needed.

PEM_get_EVP_CIPHER_INFO() can be used to determine the B<data> returned by
PEM_read() or PEM_read_bio() is encrypted and to retrieve the associated cipher
and IV.
The caller passes a pointer to structure of type B<EVP_CIPHER_INFO> via the
B<cinfo> argument and the B<header> returned via PEM_read() or PEM_read_bio().
If the call is successful 1 is returned and the cipher and IV are stored at the
address pointed to by B<cinfo>.
When the header is malformed, or not supported or when the cipher is unknown
or some internal error happens 0 is returned.
This function is deprecated, see B<NOTES> below.

PEM_do_header() can then be used to decrypt the data if the header
indicates encryption.
The B<cinfo> argument is a pointer to the structure initialized by the previous
call to PEM_get_EVP_CIPHER_INFO().
The B<data> and B<len> arguments are those returned by the previous call to
PEM_read() or PEM_read_bio().
The B<cb> and B<u> arguments make it possible to override the default password
prompt function as described in L<PEM_read_PrivateKey(3)>.
On successful completion the B<data> is decrypted in place, and B<len> is
updated to indicate the plaintext length.
This function is deprecated, see B<NOTES> below.

If the data is a priori known to not be encrypted, then neither PEM_do_header()
nor PEM_get_EVP_CIPHER_INFO() need be called.

=head1 RETURN VALUES

PEM_read() and PEM_read_bio() return 1 on success and 0 on failure, the latter
includes the case when no more PEM objects remain in the input file.
To distinguish end of file from more serious errors the caller must peek at the
error stack and check for B<PEM_R_NO_START_LINE>, which indicates that no more
PEM objects were found.  See L<ERR_peek_last_error(3)>, L<ERR_GET_REASON(3)>.

PEM_get_EVP_CIPHER_INFO() and PEM_do_header() return 1 on success, and 0 on
failure.
The B<data> is likely meaningless if these functions fail.

=head1 NOTES

The PEM_get_EVP_CIPHER_INFO() and PEM_do_header() functions are deprecated.
This is because the underlying PEM encryption format is obsolete, and should
be avoided.
It uses an encryption format with an OpenSSL-specific key-derivation function,
which employs MD5 with an iteration count of 1!
Instead, private keys should be stored in PKCS#8 form, with a strong PKCS#5
v2.0 PBE.
See L<PEM_write_PrivateKey(3)> and L<d2i_PKCS8PrivateKey_bio(3)>.

PEM_do_header() makes no assumption regarding the pass phrase received from the
password callback.
It will simply be treated as a byte sequence.

=head1 SEE ALSO

L<ERR_peek_last_error(3)>, L<ERR_GET_LIB(3)>,
L<d2i_PKCS8PrivateKey_bio(3)>,
L<passphrase-encoding(7)>

=head1 COPYRIGHT

Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the "License").  You may not use
this file except in compliance with the License.  You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.

=cut
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

ENEA — Copyright (C), ENEA. License: GNU AGPLv3+.
Legal notes  ::  JavaScript license information ::  Web API

back to top