Skip to main content
  • Home
  • login
  • Browse the archive

    swh mirror partner logo
swh logo
SoftwareHeritage
Software
Heritage
Mirror
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:dc2a5002442a00b1c0eda7c65d04ea7455e166cd
  • Code
  • Branches (204)
  • Releases (207)
    • Branches
    • Releases
    • HEAD
    • refs/heads/OpenSSL-engine-0_9_6-stable
    • refs/heads/OpenSSL-fips-0_9_7-stable
    • refs/heads/OpenSSL-fips-0_9_8-stable
    • refs/heads/OpenSSL-fips-1_2-stable
    • refs/heads/OpenSSL-fips-2_0-dev
    • refs/heads/OpenSSL-fips-2_0-stable
    • refs/heads/OpenSSL-fips2-0_9_7-stable
    • refs/heads/OpenSSL_0_9_6-stable
    • refs/heads/OpenSSL_0_9_7-stable
    • refs/heads/OpenSSL_0_9_8-stable
    • refs/heads/OpenSSL_0_9_8fg-stable
    • refs/heads/OpenSSL_1_0_0-stable
    • refs/heads/OpenSSL_1_0_1-stable
    • refs/heads/OpenSSL_1_0_2-stable
    • refs/heads/OpenSSL_1_1_0-stable
    • refs/heads/OpenSSL_1_1_1-stable
    • refs/heads/SSLeay
    • refs/heads/feature/dtls-1.3
    • refs/heads/feature/ech
    • refs/heads/feature/quic-server
    • refs/heads/master
    • refs/heads/openssl-3.0
    • refs/heads/openssl-3.1
    • refs/heads/openssl-3.2
    • refs/heads/openssl-3.3
    • refs/heads/openssl-3.4
    • refs/heads/tls1.3-draft-18
    • refs/heads/tls1.3-draft-19
    • refs/tags/AFTER_COMPAQ_PATCH
    • refs/tags/BEFORE_COMPAQ_PATCH
    • refs/tags/BEFORE_engine
    • refs/tags/BEN_FIPS_TEST_1
    • refs/tags/BEN_FIPS_TEST_2
    • refs/tags/BEN_FIPS_TEST_3
    • refs/tags/BEN_FIPS_TEST_4
    • refs/tags/BEN_FIPS_TEST_5
    • refs/tags/BEN_FIPS_TEST_6
    • refs/tags/BEN_FIPS_TEST_7
    • refs/tags/BEN_FIPS_TEST_8
    • refs/tags/FIPS_098_TEST_1
    • refs/tags/FIPS_098_TEST_2
    • refs/tags/FIPS_098_TEST_3
    • refs/tags/FIPS_098_TEST_4
    • refs/tags/FIPS_098_TEST_5
    • refs/tags/FIPS_098_TEST_6
    • refs/tags/FIPS_098_TEST_7
    • refs/tags/FIPS_098_TEST_8
    • refs/tags/FIPS_TEST_10
    • refs/tags/FIPS_TEST_9
    • refs/tags/LEVITTE_after_const
    • refs/tags/LEVITTE_before_const
    • refs/tags/OpenSSL-engine-0_9_6
    • refs/tags/OpenSSL-engine-0_9_6-beta1
    • refs/tags/OpenSSL-engine-0_9_6-beta2
    • refs/tags/OpenSSL-engine-0_9_6-beta3
    • refs/tags/OpenSSL-engine-0_9_6a
    • refs/tags/OpenSSL-engine-0_9_6a-beta1
    • refs/tags/OpenSSL-engine-0_9_6a-beta2
    • refs/tags/OpenSSL-engine-0_9_6a-beta3
    • refs/tags/OpenSSL-engine-0_9_6b
    • refs/tags/OpenSSL-engine-0_9_6c
    • refs/tags/OpenSSL-engine-0_9_6d
    • refs/tags/OpenSSL-engine-0_9_6d-beta1
    • refs/tags/OpenSSL-engine-0_9_6e
    • refs/tags/OpenSSL-engine-0_9_6f
    • refs/tags/OpenSSL-engine-0_9_6g
    • refs/tags/OpenSSL-engine-0_9_6h
    • refs/tags/OpenSSL-engine-0_9_6i
    • refs/tags/OpenSSL-engine-0_9_6j
    • refs/tags/OpenSSL-engine-0_9_6k
    • refs/tags/OpenSSL-engine-0_9_6l
    • refs/tags/OpenSSL-engine-0_9_6m
    • refs/tags/OpenSSL-fips-1_2_0
    • refs/tags/OpenSSL-fips-1_2_1
    • refs/tags/OpenSSL-fips-1_2_2
    • refs/tags/OpenSSL-fips-1_2_3
    • refs/tags/OpenSSL-fips-2_0
    • refs/tags/OpenSSL-fips-2_0-pl1
    • refs/tags/OpenSSL-fips-2_0-rc1
    • refs/tags/OpenSSL-fips-2_0-rc2
    • refs/tags/OpenSSL-fips-2_0-rc3
    • refs/tags/OpenSSL-fips-2_0-rc4
    • refs/tags/OpenSSL-fips-2_0-rc5
    • refs/tags/OpenSSL-fips-2_0-rc6
    • refs/tags/OpenSSL-fips-2_0-rc7
    • refs/tags/OpenSSL-fips-2_0-rc8
    • refs/tags/OpenSSL-fips-2_0-rc9
    • refs/tags/OpenSSL-fips-2_0_1
    • refs/tags/OpenSSL_0_9_1c
    • refs/tags/OpenSSL_0_9_2b
    • refs/tags/OpenSSL_0_9_3
    • refs/tags/OpenSSL_0_9_3a
    • refs/tags/OpenSSL_0_9_3beta1
    • refs/tags/OpenSSL_0_9_3beta2
    • refs/tags/OpenSSL_0_9_4
    • refs/tags/OpenSSL_0_9_5
    • refs/tags/OpenSSL_0_9_5a
    • refs/tags/OpenSSL_0_9_5a-beta1
    • refs/tags/OpenSSL_0_9_5a-beta2
    • refs/tags/OpenSSL_0_9_5beta1
    • refs/tags/OpenSSL_0_9_5beta2
    • refs/tags/OpenSSL_0_9_6
    • refs/tags/OpenSSL_0_9_6-beta1
    • refs/tags/OpenSSL_0_9_6-beta2
    • refs/tags/OpenSSL_0_9_6-beta3
    • refs/tags/OpenSSL_0_9_6a
    • refs/tags/OpenSSL_0_9_6a-beta1
    • refs/tags/OpenSSL_0_9_6a-beta2
    • refs/tags/OpenSSL_0_9_6a-beta3
    • refs/tags/OpenSSL_0_9_6b
    • refs/tags/OpenSSL_0_9_6c
    • refs/tags/OpenSSL_0_9_6d
    • refs/tags/OpenSSL_0_9_6d-beta1
    • refs/tags/OpenSSL_0_9_6e
    • refs/tags/OpenSSL_0_9_6f
    • refs/tags/OpenSSL_0_9_6g
    • refs/tags/OpenSSL_0_9_6h
    • refs/tags/OpenSSL_0_9_6i
    • refs/tags/OpenSSL_0_9_6j
    • refs/tags/OpenSSL_0_9_6k
    • refs/tags/OpenSSL_0_9_6l
    • refs/tags/OpenSSL_0_9_6m
    • refs/tags/OpenSSL_0_9_7
    • refs/tags/OpenSSL_0_9_7-beta1
    • refs/tags/OpenSSL_0_9_7-beta2
    • refs/tags/OpenSSL_0_9_7-beta3
    • refs/tags/OpenSSL_0_9_7-beta4
    • refs/tags/OpenSSL_0_9_7-beta5
    • refs/tags/OpenSSL_0_9_7-beta6
    • refs/tags/OpenSSL_0_9_7a
    • refs/tags/OpenSSL_0_9_7b
    • refs/tags/OpenSSL_0_9_7c
    • refs/tags/OpenSSL_0_9_7d
    • refs/tags/OpenSSL_0_9_7e
    • refs/tags/OpenSSL_0_9_7f
    • refs/tags/OpenSSL_0_9_7g
    • refs/tags/OpenSSL_0_9_7h
    • refs/tags/OpenSSL_0_9_7i
    • refs/tags/OpenSSL_0_9_7j
    • refs/tags/OpenSSL_0_9_7k
    • refs/tags/OpenSSL_0_9_7l
    • refs/tags/OpenSSL_0_9_7m
    • refs/tags/OpenSSL_0_9_8
    • refs/tags/OpenSSL_0_9_8-beta1
    • refs/tags/OpenSSL_0_9_8-beta2
    • refs/tags/OpenSSL_0_9_8-beta3
    • refs/tags/OpenSSL_0_9_8-beta4
    • refs/tags/OpenSSL_0_9_8-beta5
    • refs/tags/OpenSSL_0_9_8-beta6
    • refs/tags/OpenSSL_0_9_8a
    • refs/tags/OpenSSL_0_9_8b
    • refs/tags/OpenSSL_0_9_8c
    • refs/tags/OpenSSL_0_9_8d
    • refs/tags/OpenSSL_0_9_8e
    • refs/tags/OpenSSL_0_9_8f
    • refs/tags/OpenSSL_0_9_8g
    • refs/tags/OpenSSL_0_9_8h
    • refs/tags/OpenSSL_0_9_8i
    • refs/tags/OpenSSL_0_9_8j
    • refs/tags/OpenSSL_0_9_8k
    • refs/tags/OpenSSL_0_9_8l
    • refs/tags/OpenSSL_0_9_8m
    • refs/tags/OpenSSL_0_9_8m-beta1
    • refs/tags/OpenSSL_0_9_8n
    • refs/tags/OpenSSL_0_9_8o
    • refs/tags/OpenSSL_0_9_8p
    • refs/tags/OpenSSL_0_9_8q
    • refs/tags/OpenSSL_0_9_8r
    • refs/tags/OpenSSL_0_9_8s
    • refs/tags/OpenSSL_0_9_8t
    • refs/tags/OpenSSL_0_9_8u
    • refs/tags/OpenSSL_0_9_8v
    • refs/tags/OpenSSL_0_9_8w
    • refs/tags/OpenSSL_0_9_8x
    • refs/tags/OpenSSL_1_0_0
    • refs/tags/OpenSSL_1_0_0-beta1
    • refs/tags/OpenSSL_1_0_0-beta2
    • refs/tags/OpenSSL_1_0_0-beta3
    • refs/tags/OpenSSL_1_0_0-beta4
    • refs/tags/OpenSSL_1_0_0-beta5
    • refs/tags/OpenSSL_1_0_0a
    • refs/tags/OpenSSL_1_0_0b
    • refs/tags/OpenSSL_1_0_0c
    • refs/tags/OpenSSL_1_0_0d
    • refs/tags/OpenSSL_1_0_0e
    • refs/tags/OpenSSL_1_0_0f
    • refs/tags/OpenSSL_1_0_0g
    • refs/tags/OpenSSL_1_0_0h
    • refs/tags/OpenSSL_1_0_0i
    • refs/tags/OpenSSL_1_0_0j
    • refs/tags/OpenSSL_1_0_1
    • refs/tags/OpenSSL_1_0_1-beta1
    • refs/tags/OpenSSL_1_0_1-beta2
    • refs/tags/OpenSSL_1_0_1-beta3
    • refs/tags/OpenSSL_1_0_1a
    • refs/tags/OpenSSL_1_0_1b
    • refs/tags/OpenSSL_1_0_1c
    • refs/tags/OpenSSL_FIPS_1_0
    • refs/tags/SSLeay_0_8_1b
    • refs/tags/SSLeay_0_9_0b
    • refs/tags/SSLeay_0_9_1b
    • refs/tags/STATE_after_zlib
    • refs/tags/STATE_before_zlib
    • refs/tags/rsaref
    • openssl-3.4.0-alpha1
    • openssl-3.3.2
    • openssl-3.3.1
    • openssl-3.3.0-beta1
    • openssl-3.3.0-alpha1
    • openssl-3.3.0
    • openssl-3.2.3
    • openssl-3.2.2
    • openssl-3.2.1
    • openssl-3.2.0-beta1
    • openssl-3.2.0-alpha2
    • openssl-3.2.0-alpha1
    • openssl-3.2.0
    • openssl-3.1.7
    • openssl-3.1.6
    • openssl-3.1.5
    • openssl-3.1.4
    • openssl-3.1.3
    • openssl-3.1.2
    • openssl-3.1.1
    • openssl-3.1.0-beta1
    • openssl-3.1.0-alpha1
    • openssl-3.1.0
    • openssl-3.0.9
    • openssl-3.0.8
    • openssl-3.0.7
    • openssl-3.0.6
    • openssl-3.0.5
    • openssl-3.0.4
    • openssl-3.0.3
    • openssl-3.0.2
    • openssl-3.0.15
    • openssl-3.0.14
    • openssl-3.0.13
    • openssl-3.0.12
    • openssl-3.0.11
    • openssl-3.0.10
    • openssl-3.0.1
    • openssl-3.0.0-beta2
    • openssl-3.0.0-beta1
    • openssl-3.0.0-alpha9
    • openssl-3.0.0-alpha8
    • openssl-3.0.0-alpha7
    • openssl-3.0.0-alpha6
    • openssl-3.0.0-alpha5
    • openssl-3.0.0-alpha4
    • openssl-3.0.0-alpha3
    • openssl-3.0.0-alpha2
    • openssl-3.0.0-alpha17
    • openssl-3.0.0-alpha16
    • openssl-3.0.0-alpha15
    • openssl-3.0.0-alpha14
    • openssl-3.0.0-alpha13
    • openssl-3.0.0-alpha12
    • openssl-3.0.0-alpha11
    • openssl-3.0.0-alpha10
    • openssl-3.0.0-alpha1
    • openssl-3.0.0
    • master-pre-reformat
    • master-pre-auto-reformat
    • master-post-reformat
    • master-post-auto-reformat
    • OpenSSL_1_1_1w
    • OpenSSL_1_1_1v
    • OpenSSL_1_1_1u
    • OpenSSL_1_1_1t
    • OpenSSL_1_1_1s
    • OpenSSL_1_1_1r
    • OpenSSL_1_1_1q
    • OpenSSL_1_1_1p
    • OpenSSL_1_1_1o
    • OpenSSL_1_1_1n
    • OpenSSL_1_1_1m
    • OpenSSL_1_1_1l
    • OpenSSL_1_1_1k
    • OpenSSL_1_1_1j
    • OpenSSL_1_1_1i
    • OpenSSL_1_1_1h
    • OpenSSL_1_1_1g
    • OpenSSL_1_1_1f
    • OpenSSL_1_1_1e
    • OpenSSL_1_1_1d
    • OpenSSL_1_1_1c
    • OpenSSL_1_1_1b
    • OpenSSL_1_1_1a
    • OpenSSL_1_1_1-pre9
    • OpenSSL_1_1_1-pre8
    • OpenSSL_1_1_1-pre7
    • OpenSSL_1_1_1-pre6
    • OpenSSL_1_1_1-pre5
    • OpenSSL_1_1_1-pre4
    • OpenSSL_1_1_1-pre3
    • OpenSSL_1_1_1-pre2
    • OpenSSL_1_1_1-pre1
    • OpenSSL_1_1_1
    • OpenSSL_1_1_0l
    • OpenSSL_1_1_0k
    • OpenSSL_1_1_0j
    • OpenSSL_1_1_0i
    • OpenSSL_1_1_0h
    • OpenSSL_1_1_0g
    • OpenSSL_1_1_0f
    • OpenSSL_1_1_0e
    • OpenSSL_1_1_0d
    • OpenSSL_1_1_0c
    • OpenSSL_1_1_0b
    • OpenSSL_1_1_0a
    • OpenSSL_1_1_0-pre6
    • OpenSSL_1_1_0-pre5
    • OpenSSL_1_1_0-pre4
    • OpenSSL_1_1_0-pre3
    • OpenSSL_1_1_0-pre2
    • OpenSSL_1_1_0-pre1
    • OpenSSL_1_1_0
    • OpenSSL_1_0_2u
    • OpenSSL_1_0_2t
    • OpenSSL_1_0_2s
    • OpenSSL_1_0_2r
    • OpenSSL_1_0_2q
    • OpenSSL_1_0_2p
    • OpenSSL_1_0_2o
    • OpenSSL_1_0_2n
    • OpenSSL_1_0_2m
    • OpenSSL_1_0_2l
    • OpenSSL_1_0_2k
    • OpenSSL_1_0_2j
    • OpenSSL_1_0_2i
    • OpenSSL_1_0_2h
    • OpenSSL_1_0_2g
    • OpenSSL_1_0_2f
    • OpenSSL_1_0_2e
    • OpenSSL_1_0_2d
    • OpenSSL_1_0_2c
    • OpenSSL_1_0_2b
    • OpenSSL_1_0_2a
    • OpenSSL_1_0_2-pre-reformat
    • OpenSSL_1_0_2-pre-auto-reformat
    • OpenSSL_1_0_2-post-reformat
    • OpenSSL_1_0_2-post-auto-reformat
    • OpenSSL_1_0_2-beta3
    • OpenSSL_1_0_2-beta2
    • OpenSSL_1_0_2-beta1
    • OpenSSL_1_0_2
    • OpenSSL_1_0_1u
    • OpenSSL_1_0_1t
    • OpenSSL_1_0_1s
    • OpenSSL_1_0_1r
    • OpenSSL_1_0_1q
    • OpenSSL_1_0_1p
    • OpenSSL_1_0_1o
    • OpenSSL_1_0_1n
    • OpenSSL_1_0_1m
    • OpenSSL_1_0_1l
    • OpenSSL_1_0_1k
    • OpenSSL_1_0_1j
    • OpenSSL_1_0_1i
    • OpenSSL_1_0_1h
    • OpenSSL_1_0_1g
    • OpenSSL_1_0_1f
    • OpenSSL_1_0_1e
    • OpenSSL_1_0_1d
    • OpenSSL_1_0_1-pre-reformat
    • OpenSSL_1_0_1-pre-auto-reformat
    • OpenSSL_1_0_1-post-reformat
    • OpenSSL_1_0_1-post-auto-reformat
    • OpenSSL_1_0_0t
    • OpenSSL_1_0_0s
    • OpenSSL_1_0_0r
    • OpenSSL_1_0_0q
    • OpenSSL_1_0_0p
    • OpenSSL_1_0_0o
    • OpenSSL_1_0_0n
    • OpenSSL_1_0_0m
    • OpenSSL_1_0_0l
    • OpenSSL_1_0_0k
    • OpenSSL_1_0_0-pre-reformat
    • OpenSSL_1_0_0-pre-auto-reformat
    • OpenSSL_1_0_0-post-reformat
    • OpenSSL_1_0_0-post-auto-reformat
    • OpenSSL_0_9_8zh
    • OpenSSL_0_9_8zg
    • OpenSSL_0_9_8zf
    • OpenSSL_0_9_8ze
    • OpenSSL_0_9_8zd
    • OpenSSL_0_9_8zc
    • OpenSSL_0_9_8zb
    • OpenSSL_0_9_8za
    • OpenSSL_0_9_8y
    • OpenSSL_0_9_8-pre-reformat
    • OpenSSL_0_9_8-pre-auto-reformat
    • OpenSSL_0_9_8-post-reformat
    • OpenSSL_0_9_8-post-auto-reformat
    • OpenSSL-fips-2_0_9
    • OpenSSL-fips-2_0_8
    • OpenSSL-fips-2_0_7
    • OpenSSL-fips-2_0_6
    • OpenSSL-fips-2_0_5
    • OpenSSL-fips-2_0_4
    • OpenSSL-fips-2_0_3
    • OpenSSL-fips-2_0_2
    • OpenSSL-fips-2_0_16
    • OpenSSL-fips-2_0_15
    • OpenSSL-fips-2_0_14
    • OpenSSL-fips-2_0_13
    • OpenSSL-fips-2_0_12
    • OpenSSL-fips-2_0_11
    • OpenSSL-fips-2_0_10
  • 05abad5
  • /
  • crypto
  • /
  • ec
  • /
  • ec_mult.c
Raw File
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
  • release
content badge Iframe embedding
swh:1:cnt:036cdde490ba9a5f058b58a5796fb44767fce76f
directory badge Iframe embedding
swh:1:dir:dfaebc70add14d7d13711198f4608606113ca9a9
revision badge
swh:1:rev:0453163e9a9052884cce288ff3e2acb77725a239
snapshot badge
swh:1:snp:dc2a5002442a00b1c0eda7c65d04ea7455e166cd
release badge
swh:1:rel:7f5c1afcd8d5584422139fb0db7e09d6c07dd7c6
Tip revision: 0453163e9a9052884cce288ff3e2acb77725a239 authored by Matt Caswell on 16 February 2017, 11:58:19 UTC
Prepare for 1.1.0e release
Tip revision: 0453163
ec_mult.c
/*
 * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
 * and contributed to the OpenSSL project.
 */

#include <string.h>
#include <openssl/err.h>

#include "internal/cryptlib.h"
#include "internal/bn_int.h"
#include "ec_lcl.h"

/*
 * This file implements the wNAF-based interleaving multi-exponentiation method
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
 * for multiplication with precomputation, we use wNAF splitting
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
 */

/* structure for precomputed multiples of the generator */
struct ec_pre_comp_st {
    const EC_GROUP *group;      /* parent EC_GROUP object */
    size_t blocksize;           /* block size for wNAF splitting */
    size_t numblocks;           /* max. number of blocks for which we have
                                 * precomputation */
    size_t w;                   /* window size */
    EC_POINT **points;          /* array with pre-calculated multiples of
                                 * generator: 'num' pointers to EC_POINT
                                 * objects followed by a NULL */
    size_t num;                 /* numblocks * 2^(w-1) */
    int references;
    CRYPTO_RWLOCK *lock;
};

static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
{
    EC_PRE_COMP *ret = NULL;

    if (!group)
        return NULL;

    ret = OPENSSL_zalloc(sizeof(*ret));
    if (ret == NULL) {
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        return ret;
    }

    ret->group = group;
    ret->blocksize = 8;         /* default */
    ret->w = 4;                 /* default */
    ret->references = 1;

    ret->lock = CRYPTO_THREAD_lock_new();
    if (ret->lock == NULL) {
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        OPENSSL_free(ret);
        return NULL;
    }
    return ret;
}

EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
{
    int i;
    if (pre != NULL)
        CRYPTO_atomic_add(&pre->references, 1, &i, pre->lock);
    return pre;
}

void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
{
    int i;

    if (pre == NULL)
        return;

    CRYPTO_atomic_add(&pre->references, -1, &i, pre->lock);
    REF_PRINT_COUNT("EC_ec", pre);
    if (i > 0)
        return;
    REF_ASSERT_ISNT(i < 0);

    if (pre->points != NULL) {
        EC_POINT **pts;

        for (pts = pre->points; *pts != NULL; pts++)
            EC_POINT_free(*pts);
        OPENSSL_free(pre->points);
    }
    CRYPTO_THREAD_lock_free(pre->lock);
    OPENSSL_free(pre);
}

/*
 * TODO: table should be optimised for the wNAF-based implementation,
 * sometimes smaller windows will give better performance (thus the
 * boundaries should be increased)
 */
#define EC_window_bits_for_scalar_size(b) \
                ((size_t) \
                 ((b) >= 2000 ? 6 : \
                  (b) >=  800 ? 5 : \
                  (b) >=  300 ? 4 : \
                  (b) >=   70 ? 3 : \
                  (b) >=   20 ? 2 : \
                  1))

/*-
 * Compute
 *      \sum scalars[i]*points[i],
 * also including
 *      scalar*generator
 * in the addition if scalar != NULL
 */
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
                BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    const EC_POINT *generator = NULL;
    EC_POINT *tmp = NULL;
    size_t totalnum;
    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
    size_t pre_points_per_block = 0;
    size_t i, j;
    int k;
    int r_is_inverted = 0;
    int r_is_at_infinity = 1;
    size_t *wsize = NULL;       /* individual window sizes */
    signed char **wNAF = NULL;  /* individual wNAFs */
    size_t *wNAF_len = NULL;
    size_t max_len = 0;
    size_t num_val;
    EC_POINT **val = NULL;      /* precomputation */
    EC_POINT **v;
    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
                                 * 'pre_comp->points' */
    const EC_PRE_COMP *pre_comp = NULL;
    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
                                 * treated like other scalars, i.e.
                                 * precomputation is not available */
    int ret = 0;

    if (group->meth != r->meth) {
        ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
        return 0;
    }

    if ((scalar == NULL) && (num == 0)) {
        return EC_POINT_set_to_infinity(group, r);
    }

    for (i = 0; i < num; i++) {
        if (group->meth != points[i]->meth) {
            ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
            return 0;
        }
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            goto err;
    }

    if (scalar != NULL) {
        generator = EC_GROUP_get0_generator(group);
        if (generator == NULL) {
            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
            goto err;
        }

        /* look if we can use precomputed multiples of generator */

        pre_comp = group->pre_comp.ec;
        if (pre_comp && pre_comp->numblocks
            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
                0)) {
            blocksize = pre_comp->blocksize;

            /*
             * determine maximum number of blocks that wNAF splitting may
             * yield (NB: maximum wNAF length is bit length plus one)
             */
            numblocks = (BN_num_bits(scalar) / blocksize) + 1;

            /*
             * we cannot use more blocks than we have precomputation for
             */
            if (numblocks > pre_comp->numblocks)
                numblocks = pre_comp->numblocks;

            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);

            /* check that pre_comp looks sane */
            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }
        } else {
            /* can't use precomputation */
            pre_comp = NULL;
            numblocks = 1;
            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
                                 * 'scalars' */
        }
    }

    totalnum = num + numblocks;

    wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
    wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space
                                                             * for pivot */
    val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);

    /* Ensure wNAF is initialised in case we end up going to err */
    if (wNAF != NULL)
        wNAF[0] = NULL;         /* preliminary pivot */

    if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    /*
     * num_val will be the total number of temporarily precomputed points
     */
    num_val = 0;

    for (i = 0; i < num + num_scalar; i++) {
        size_t bits;

        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
        wsize[i] = EC_window_bits_for_scalar_size(bits);
        num_val += (size_t)1 << (wsize[i] - 1);
        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
        wNAF[i] =
            bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
                            &wNAF_len[i]);
        if (wNAF[i] == NULL)
            goto err;
        if (wNAF_len[i] > max_len)
            max_len = wNAF_len[i];
    }

    if (numblocks) {
        /* we go here iff scalar != NULL */

        if (pre_comp == NULL) {
            if (num_scalar != 1) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }
            /* we have already generated a wNAF for 'scalar' */
        } else {
            signed char *tmp_wNAF = NULL;
            size_t tmp_len = 0;

            if (num_scalar != 0) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }

            /*
             * use the window size for which we have precomputation
             */
            wsize[num] = pre_comp->w;
            tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
            if (!tmp_wNAF)
                goto err;

            if (tmp_len <= max_len) {
                /*
                 * One of the other wNAFs is at least as long as the wNAF
                 * belonging to the generator, so wNAF splitting will not buy
                 * us anything.
                 */

                numblocks = 1;
                totalnum = num + 1; /* don't use wNAF splitting */
                wNAF[num] = tmp_wNAF;
                wNAF[num + 1] = NULL;
                wNAF_len[num] = tmp_len;
                /*
                 * pre_comp->points starts with the points that we need here:
                 */
                val_sub[num] = pre_comp->points;
            } else {
                /*
                 * don't include tmp_wNAF directly into wNAF array - use wNAF
                 * splitting and include the blocks
                 */

                signed char *pp;
                EC_POINT **tmp_points;

                if (tmp_len < numblocks * blocksize) {
                    /*
                     * possibly we can do with fewer blocks than estimated
                     */
                    numblocks = (tmp_len + blocksize - 1) / blocksize;
                    if (numblocks > pre_comp->numblocks) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    totalnum = num + numblocks;
                }

                /* split wNAF in 'numblocks' parts */
                pp = tmp_wNAF;
                tmp_points = pre_comp->points;

                for (i = num; i < totalnum; i++) {
                    if (i < totalnum - 1) {
                        wNAF_len[i] = blocksize;
                        if (tmp_len < blocksize) {
                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                            OPENSSL_free(tmp_wNAF);
                            goto err;
                        }
                        tmp_len -= blocksize;
                    } else
                        /*
                         * last block gets whatever is left (this could be
                         * more or less than 'blocksize'!)
                         */
                        wNAF_len[i] = tmp_len;

                    wNAF[i + 1] = NULL;
                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
                    if (wNAF[i] == NULL) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    memcpy(wNAF[i], pp, wNAF_len[i]);
                    if (wNAF_len[i] > max_len)
                        max_len = wNAF_len[i];

                    if (*tmp_points == NULL) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    val_sub[i] = tmp_points;
                    tmp_points += pre_points_per_block;
                    pp += blocksize;
                }
                OPENSSL_free(tmp_wNAF);
            }
        }
    }

    /*
     * All points we precompute now go into a single array 'val'.
     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
     * subarray of 'pre_comp->points' if we already have precomputation.
     */
    val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
    if (val == NULL) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
        goto err;
    }
    val[num_val] = NULL;        /* pivot element */

    /* allocate points for precomputation */
    v = val;
    for (i = 0; i < num + num_scalar; i++) {
        val_sub[i] = v;
        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
            *v = EC_POINT_new(group);
            if (*v == NULL)
                goto err;
            v++;
        }
    }
    if (!(v == val + num_val)) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
        goto err;
    }

    if ((tmp = EC_POINT_new(group)) == NULL)
        goto err;

    /*-
     * prepare precomputed values:
     *    val_sub[i][0] :=     points[i]
     *    val_sub[i][1] := 3 * points[i]
     *    val_sub[i][2] := 5 * points[i]
     *    ...
     */
    for (i = 0; i < num + num_scalar; i++) {
        if (i < num) {
            if (!EC_POINT_copy(val_sub[i][0], points[i]))
                goto err;
        } else {
            if (!EC_POINT_copy(val_sub[i][0], generator))
                goto err;
        }

        if (wsize[i] > 1) {
            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
                goto err;
            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
                if (!EC_POINT_add
                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
                    goto err;
            }
        }
    }

    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
        goto err;

    r_is_at_infinity = 1;

    for (k = max_len - 1; k >= 0; k--) {
        if (!r_is_at_infinity) {
            if (!EC_POINT_dbl(group, r, r, ctx))
                goto err;
        }

        for (i = 0; i < totalnum; i++) {
            if (wNAF_len[i] > (size_t)k) {
                int digit = wNAF[i][k];
                int is_neg;

                if (digit) {
                    is_neg = digit < 0;

                    if (is_neg)
                        digit = -digit;

                    if (is_neg != r_is_inverted) {
                        if (!r_is_at_infinity) {
                            if (!EC_POINT_invert(group, r, ctx))
                                goto err;
                        }
                        r_is_inverted = !r_is_inverted;
                    }

                    /* digit > 0 */

                    if (r_is_at_infinity) {
                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
                            goto err;
                        r_is_at_infinity = 0;
                    } else {
                        if (!EC_POINT_add
                            (group, r, r, val_sub[i][digit >> 1], ctx))
                            goto err;
                    }
                }
            }
        }
    }

    if (r_is_at_infinity) {
        if (!EC_POINT_set_to_infinity(group, r))
            goto err;
    } else {
        if (r_is_inverted)
            if (!EC_POINT_invert(group, r, ctx))
                goto err;
    }

    ret = 1;

 err:
    BN_CTX_free(new_ctx);
    EC_POINT_free(tmp);
    OPENSSL_free(wsize);
    OPENSSL_free(wNAF_len);
    if (wNAF != NULL) {
        signed char **w;

        for (w = wNAF; *w != NULL; w++)
            OPENSSL_free(*w);

        OPENSSL_free(wNAF);
    }
    if (val != NULL) {
        for (v = val; *v != NULL; v++)
            EC_POINT_clear_free(*v);

        OPENSSL_free(val);
    }
    OPENSSL_free(val_sub);
    return ret;
}

/*-
 * ec_wNAF_precompute_mult()
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
 *
 * 'pre_comp->points' is an array of multiples of the generator
 * of the following form:
 * points[0] =     generator;
 * points[1] = 3 * generator;
 * ...
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
 * points[2^(w-1)]   =     2^blocksize * generator;
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
 * ...
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
 * ...
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
 * points[2^(w-1)*numblocks]       = NULL
 */
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
{
    const EC_POINT *generator;
    EC_POINT *tmp_point = NULL, *base = NULL, **var;
    BN_CTX *new_ctx = NULL;
    const BIGNUM *order;
    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
    EC_POINT **points = NULL;
    EC_PRE_COMP *pre_comp;
    int ret = 0;

    /* if there is an old EC_PRE_COMP object, throw it away */
    EC_pre_comp_free(group);
    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
        return 0;

    generator = EC_GROUP_get0_generator(group);
    if (generator == NULL) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
        goto err;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            goto err;
    }

    BN_CTX_start(ctx);

    order = EC_GROUP_get0_order(group);
    if (order == NULL)
        goto err;
    if (BN_is_zero(order)) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
        goto err;
    }

    bits = BN_num_bits(order);
    /*
     * The following parameters mean we precompute (approximately) one point
     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
     * bit lengths, other parameter combinations might provide better
     * efficiency.
     */
    blocksize = 8;
    w = 4;
    if (EC_window_bits_for_scalar_size(bits) > w) {
        /* let's not make the window too small ... */
        w = EC_window_bits_for_scalar_size(bits);
    }

    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
                                                     * to use for wNAF
                                                     * splitting */

    pre_points_per_block = (size_t)1 << (w - 1);
    num = pre_points_per_block * numblocks; /* number of points to compute
                                             * and store */

    points = OPENSSL_malloc(sizeof(*points) * (num + 1));
    if (points == NULL) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    var = points;
    var[num] = NULL;            /* pivot */
    for (i = 0; i < num; i++) {
        if ((var[i] = EC_POINT_new(group)) == NULL) {
            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }

    if ((tmp_point = EC_POINT_new(group)) == NULL
        || (base = EC_POINT_new(group)) == NULL) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!EC_POINT_copy(base, generator))
        goto err;

    /* do the precomputation */
    for (i = 0; i < numblocks; i++) {
        size_t j;

        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
            goto err;

        if (!EC_POINT_copy(*var++, base))
            goto err;

        for (j = 1; j < pre_points_per_block; j++, var++) {
            /*
             * calculate odd multiples of the current base point
             */
            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
                goto err;
        }

        if (i < numblocks - 1) {
            /*
             * get the next base (multiply current one by 2^blocksize)
             */
            size_t k;

            if (blocksize <= 2) {
                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
                goto err;
            }

            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
                goto err;
            for (k = 2; k < blocksize; k++) {
                if (!EC_POINT_dbl(group, base, base, ctx))
                    goto err;
            }
        }
    }

    if (!EC_POINTs_make_affine(group, num, points, ctx))
        goto err;

    pre_comp->group = group;
    pre_comp->blocksize = blocksize;
    pre_comp->numblocks = numblocks;
    pre_comp->w = w;
    pre_comp->points = points;
    points = NULL;
    pre_comp->num = num;
    SETPRECOMP(group, ec, pre_comp);
    pre_comp = NULL;
    ret = 1;

 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    EC_ec_pre_comp_free(pre_comp);
    if (points) {
        EC_POINT **p;

        for (p = points; *p != NULL; p++)
            EC_POINT_free(*p);
        OPENSSL_free(points);
    }
    EC_POINT_free(tmp_point);
    EC_POINT_free(base);
    return ret;
}

int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
{
    return HAVEPRECOMP(group, ec);
}

ENEA — Copyright (C), ENEA. License: GNU AGPLv3+.
Legal notes  ::  JavaScript license information ::  Web API

back to top