Skip to main content
  • Home
  • login
  • Browse the archive

    swh mirror partner logo
swh logo
SoftwareHeritage
Software
Heritage
Mirror
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

swh:1:snp:dc2a5002442a00b1c0eda7c65d04ea7455e166cd
  • Code
  • Branches (204)
  • Releases (207)
    • Branches
    • Releases
    • HEAD
    • refs/heads/OpenSSL-engine-0_9_6-stable
    • refs/heads/OpenSSL-fips-0_9_7-stable
    • refs/heads/OpenSSL-fips-0_9_8-stable
    • refs/heads/OpenSSL-fips-1_2-stable
    • refs/heads/OpenSSL-fips-2_0-dev
    • refs/heads/OpenSSL-fips-2_0-stable
    • refs/heads/OpenSSL-fips2-0_9_7-stable
    • refs/heads/OpenSSL_0_9_6-stable
    • refs/heads/OpenSSL_0_9_7-stable
    • refs/heads/OpenSSL_0_9_8-stable
    • refs/heads/OpenSSL_0_9_8fg-stable
    • refs/heads/OpenSSL_1_0_0-stable
    • refs/heads/OpenSSL_1_0_1-stable
    • refs/heads/OpenSSL_1_0_2-stable
    • refs/heads/OpenSSL_1_1_0-stable
    • refs/heads/OpenSSL_1_1_1-stable
    • refs/heads/SSLeay
    • refs/heads/feature/dtls-1.3
    • refs/heads/feature/ech
    • refs/heads/feature/quic-server
    • refs/heads/master
    • refs/heads/openssl-3.0
    • refs/heads/openssl-3.1
    • refs/heads/openssl-3.2
    • refs/heads/openssl-3.3
    • refs/heads/openssl-3.4
    • refs/heads/tls1.3-draft-18
    • refs/heads/tls1.3-draft-19
    • refs/tags/AFTER_COMPAQ_PATCH
    • refs/tags/BEFORE_COMPAQ_PATCH
    • refs/tags/BEFORE_engine
    • refs/tags/BEN_FIPS_TEST_1
    • refs/tags/BEN_FIPS_TEST_2
    • refs/tags/BEN_FIPS_TEST_3
    • refs/tags/BEN_FIPS_TEST_4
    • refs/tags/BEN_FIPS_TEST_5
    • refs/tags/BEN_FIPS_TEST_6
    • refs/tags/BEN_FIPS_TEST_7
    • refs/tags/BEN_FIPS_TEST_8
    • refs/tags/FIPS_098_TEST_1
    • refs/tags/FIPS_098_TEST_2
    • refs/tags/FIPS_098_TEST_3
    • refs/tags/FIPS_098_TEST_4
    • refs/tags/FIPS_098_TEST_5
    • refs/tags/FIPS_098_TEST_6
    • refs/tags/FIPS_098_TEST_7
    • refs/tags/FIPS_098_TEST_8
    • refs/tags/FIPS_TEST_10
    • refs/tags/FIPS_TEST_9
    • refs/tags/LEVITTE_after_const
    • refs/tags/LEVITTE_before_const
    • refs/tags/OpenSSL-engine-0_9_6
    • refs/tags/OpenSSL-engine-0_9_6-beta1
    • refs/tags/OpenSSL-engine-0_9_6-beta2
    • refs/tags/OpenSSL-engine-0_9_6-beta3
    • refs/tags/OpenSSL-engine-0_9_6a
    • refs/tags/OpenSSL-engine-0_9_6a-beta1
    • refs/tags/OpenSSL-engine-0_9_6a-beta2
    • refs/tags/OpenSSL-engine-0_9_6a-beta3
    • refs/tags/OpenSSL-engine-0_9_6b
    • refs/tags/OpenSSL-engine-0_9_6c
    • refs/tags/OpenSSL-engine-0_9_6d
    • refs/tags/OpenSSL-engine-0_9_6d-beta1
    • refs/tags/OpenSSL-engine-0_9_6e
    • refs/tags/OpenSSL-engine-0_9_6f
    • refs/tags/OpenSSL-engine-0_9_6g
    • refs/tags/OpenSSL-engine-0_9_6h
    • refs/tags/OpenSSL-engine-0_9_6i
    • refs/tags/OpenSSL-engine-0_9_6j
    • refs/tags/OpenSSL-engine-0_9_6k
    • refs/tags/OpenSSL-engine-0_9_6l
    • refs/tags/OpenSSL-engine-0_9_6m
    • refs/tags/OpenSSL-fips-1_2_0
    • refs/tags/OpenSSL-fips-1_2_1
    • refs/tags/OpenSSL-fips-1_2_2
    • refs/tags/OpenSSL-fips-1_2_3
    • refs/tags/OpenSSL-fips-2_0
    • refs/tags/OpenSSL-fips-2_0-pl1
    • refs/tags/OpenSSL-fips-2_0-rc1
    • refs/tags/OpenSSL-fips-2_0-rc2
    • refs/tags/OpenSSL-fips-2_0-rc3
    • refs/tags/OpenSSL-fips-2_0-rc4
    • refs/tags/OpenSSL-fips-2_0-rc5
    • refs/tags/OpenSSL-fips-2_0-rc6
    • refs/tags/OpenSSL-fips-2_0-rc7
    • refs/tags/OpenSSL-fips-2_0-rc8
    • refs/tags/OpenSSL-fips-2_0-rc9
    • refs/tags/OpenSSL-fips-2_0_1
    • refs/tags/OpenSSL_0_9_1c
    • refs/tags/OpenSSL_0_9_2b
    • refs/tags/OpenSSL_0_9_3
    • refs/tags/OpenSSL_0_9_3a
    • refs/tags/OpenSSL_0_9_3beta1
    • refs/tags/OpenSSL_0_9_3beta2
    • refs/tags/OpenSSL_0_9_4
    • refs/tags/OpenSSL_0_9_5
    • refs/tags/OpenSSL_0_9_5a
    • refs/tags/OpenSSL_0_9_5a-beta1
    • refs/tags/OpenSSL_0_9_5a-beta2
    • refs/tags/OpenSSL_0_9_5beta1
    • refs/tags/OpenSSL_0_9_5beta2
    • refs/tags/OpenSSL_0_9_6
    • refs/tags/OpenSSL_0_9_6-beta1
    • refs/tags/OpenSSL_0_9_6-beta2
    • refs/tags/OpenSSL_0_9_6-beta3
    • refs/tags/OpenSSL_0_9_6a
    • refs/tags/OpenSSL_0_9_6a-beta1
    • refs/tags/OpenSSL_0_9_6a-beta2
    • refs/tags/OpenSSL_0_9_6a-beta3
    • refs/tags/OpenSSL_0_9_6b
    • refs/tags/OpenSSL_0_9_6c
    • refs/tags/OpenSSL_0_9_6d
    • refs/tags/OpenSSL_0_9_6d-beta1
    • refs/tags/OpenSSL_0_9_6e
    • refs/tags/OpenSSL_0_9_6f
    • refs/tags/OpenSSL_0_9_6g
    • refs/tags/OpenSSL_0_9_6h
    • refs/tags/OpenSSL_0_9_6i
    • refs/tags/OpenSSL_0_9_6j
    • refs/tags/OpenSSL_0_9_6k
    • refs/tags/OpenSSL_0_9_6l
    • refs/tags/OpenSSL_0_9_6m
    • refs/tags/OpenSSL_0_9_7
    • refs/tags/OpenSSL_0_9_7-beta1
    • refs/tags/OpenSSL_0_9_7-beta2
    • refs/tags/OpenSSL_0_9_7-beta3
    • refs/tags/OpenSSL_0_9_7-beta4
    • refs/tags/OpenSSL_0_9_7-beta5
    • refs/tags/OpenSSL_0_9_7-beta6
    • refs/tags/OpenSSL_0_9_7a
    • refs/tags/OpenSSL_0_9_7b
    • refs/tags/OpenSSL_0_9_7c
    • refs/tags/OpenSSL_0_9_7d
    • refs/tags/OpenSSL_0_9_7e
    • refs/tags/OpenSSL_0_9_7f
    • refs/tags/OpenSSL_0_9_7g
    • refs/tags/OpenSSL_0_9_7h
    • refs/tags/OpenSSL_0_9_7i
    • refs/tags/OpenSSL_0_9_7j
    • refs/tags/OpenSSL_0_9_7k
    • refs/tags/OpenSSL_0_9_7l
    • refs/tags/OpenSSL_0_9_7m
    • refs/tags/OpenSSL_0_9_8
    • refs/tags/OpenSSL_0_9_8-beta1
    • refs/tags/OpenSSL_0_9_8-beta2
    • refs/tags/OpenSSL_0_9_8-beta3
    • refs/tags/OpenSSL_0_9_8-beta4
    • refs/tags/OpenSSL_0_9_8-beta5
    • refs/tags/OpenSSL_0_9_8-beta6
    • refs/tags/OpenSSL_0_9_8a
    • refs/tags/OpenSSL_0_9_8b
    • refs/tags/OpenSSL_0_9_8c
    • refs/tags/OpenSSL_0_9_8d
    • refs/tags/OpenSSL_0_9_8e
    • refs/tags/OpenSSL_0_9_8f
    • refs/tags/OpenSSL_0_9_8g
    • refs/tags/OpenSSL_0_9_8h
    • refs/tags/OpenSSL_0_9_8i
    • refs/tags/OpenSSL_0_9_8j
    • refs/tags/OpenSSL_0_9_8k
    • refs/tags/OpenSSL_0_9_8l
    • refs/tags/OpenSSL_0_9_8m
    • refs/tags/OpenSSL_0_9_8m-beta1
    • refs/tags/OpenSSL_0_9_8n
    • refs/tags/OpenSSL_0_9_8o
    • refs/tags/OpenSSL_0_9_8p
    • refs/tags/OpenSSL_0_9_8q
    • refs/tags/OpenSSL_0_9_8r
    • refs/tags/OpenSSL_0_9_8s
    • refs/tags/OpenSSL_0_9_8t
    • refs/tags/OpenSSL_0_9_8u
    • refs/tags/OpenSSL_0_9_8v
    • refs/tags/OpenSSL_0_9_8w
    • refs/tags/OpenSSL_0_9_8x
    • refs/tags/OpenSSL_1_0_0
    • refs/tags/OpenSSL_1_0_0-beta1
    • refs/tags/OpenSSL_1_0_0-beta2
    • refs/tags/OpenSSL_1_0_0-beta3
    • refs/tags/OpenSSL_1_0_0-beta4
    • refs/tags/OpenSSL_1_0_0-beta5
    • refs/tags/OpenSSL_1_0_0a
    • refs/tags/OpenSSL_1_0_0b
    • refs/tags/OpenSSL_1_0_0c
    • refs/tags/OpenSSL_1_0_0d
    • refs/tags/OpenSSL_1_0_0e
    • refs/tags/OpenSSL_1_0_0f
    • refs/tags/OpenSSL_1_0_0g
    • refs/tags/OpenSSL_1_0_0h
    • refs/tags/OpenSSL_1_0_0i
    • refs/tags/OpenSSL_1_0_0j
    • refs/tags/OpenSSL_1_0_1
    • refs/tags/OpenSSL_1_0_1-beta1
    • refs/tags/OpenSSL_1_0_1-beta2
    • refs/tags/OpenSSL_1_0_1-beta3
    • refs/tags/OpenSSL_1_0_1a
    • refs/tags/OpenSSL_1_0_1b
    • refs/tags/OpenSSL_1_0_1c
    • refs/tags/OpenSSL_FIPS_1_0
    • refs/tags/SSLeay_0_8_1b
    • refs/tags/SSLeay_0_9_0b
    • refs/tags/SSLeay_0_9_1b
    • refs/tags/STATE_after_zlib
    • refs/tags/STATE_before_zlib
    • refs/tags/rsaref
    • openssl-3.4.0-alpha1
    • openssl-3.3.2
    • openssl-3.3.1
    • openssl-3.3.0-beta1
    • openssl-3.3.0-alpha1
    • openssl-3.3.0
    • openssl-3.2.3
    • openssl-3.2.2
    • openssl-3.2.1
    • openssl-3.2.0-beta1
    • openssl-3.2.0-alpha2
    • openssl-3.2.0-alpha1
    • openssl-3.2.0
    • openssl-3.1.7
    • openssl-3.1.6
    • openssl-3.1.5
    • openssl-3.1.4
    • openssl-3.1.3
    • openssl-3.1.2
    • openssl-3.1.1
    • openssl-3.1.0-beta1
    • openssl-3.1.0-alpha1
    • openssl-3.1.0
    • openssl-3.0.9
    • openssl-3.0.8
    • openssl-3.0.7
    • openssl-3.0.6
    • openssl-3.0.5
    • openssl-3.0.4
    • openssl-3.0.3
    • openssl-3.0.2
    • openssl-3.0.15
    • openssl-3.0.14
    • openssl-3.0.13
    • openssl-3.0.12
    • openssl-3.0.11
    • openssl-3.0.10
    • openssl-3.0.1
    • openssl-3.0.0-beta2
    • openssl-3.0.0-beta1
    • openssl-3.0.0-alpha9
    • openssl-3.0.0-alpha8
    • openssl-3.0.0-alpha7
    • openssl-3.0.0-alpha6
    • openssl-3.0.0-alpha5
    • openssl-3.0.0-alpha4
    • openssl-3.0.0-alpha3
    • openssl-3.0.0-alpha2
    • openssl-3.0.0-alpha17
    • openssl-3.0.0-alpha16
    • openssl-3.0.0-alpha15
    • openssl-3.0.0-alpha14
    • openssl-3.0.0-alpha13
    • openssl-3.0.0-alpha12
    • openssl-3.0.0-alpha11
    • openssl-3.0.0-alpha10
    • openssl-3.0.0-alpha1
    • openssl-3.0.0
    • master-pre-reformat
    • master-pre-auto-reformat
    • master-post-reformat
    • master-post-auto-reformat
    • OpenSSL_1_1_1w
    • OpenSSL_1_1_1v
    • OpenSSL_1_1_1u
    • OpenSSL_1_1_1t
    • OpenSSL_1_1_1s
    • OpenSSL_1_1_1r
    • OpenSSL_1_1_1q
    • OpenSSL_1_1_1p
    • OpenSSL_1_1_1o
    • OpenSSL_1_1_1n
    • OpenSSL_1_1_1m
    • OpenSSL_1_1_1l
    • OpenSSL_1_1_1k
    • OpenSSL_1_1_1j
    • OpenSSL_1_1_1i
    • OpenSSL_1_1_1h
    • OpenSSL_1_1_1g
    • OpenSSL_1_1_1f
    • OpenSSL_1_1_1e
    • OpenSSL_1_1_1d
    • OpenSSL_1_1_1c
    • OpenSSL_1_1_1b
    • OpenSSL_1_1_1a
    • OpenSSL_1_1_1-pre9
    • OpenSSL_1_1_1-pre8
    • OpenSSL_1_1_1-pre7
    • OpenSSL_1_1_1-pre6
    • OpenSSL_1_1_1-pre5
    • OpenSSL_1_1_1-pre4
    • OpenSSL_1_1_1-pre3
    • OpenSSL_1_1_1-pre2
    • OpenSSL_1_1_1-pre1
    • OpenSSL_1_1_1
    • OpenSSL_1_1_0l
    • OpenSSL_1_1_0k
    • OpenSSL_1_1_0j
    • OpenSSL_1_1_0i
    • OpenSSL_1_1_0h
    • OpenSSL_1_1_0g
    • OpenSSL_1_1_0f
    • OpenSSL_1_1_0e
    • OpenSSL_1_1_0d
    • OpenSSL_1_1_0c
    • OpenSSL_1_1_0b
    • OpenSSL_1_1_0a
    • OpenSSL_1_1_0-pre6
    • OpenSSL_1_1_0-pre5
    • OpenSSL_1_1_0-pre4
    • OpenSSL_1_1_0-pre3
    • OpenSSL_1_1_0-pre2
    • OpenSSL_1_1_0-pre1
    • OpenSSL_1_1_0
    • OpenSSL_1_0_2u
    • OpenSSL_1_0_2t
    • OpenSSL_1_0_2s
    • OpenSSL_1_0_2r
    • OpenSSL_1_0_2q
    • OpenSSL_1_0_2p
    • OpenSSL_1_0_2o
    • OpenSSL_1_0_2n
    • OpenSSL_1_0_2m
    • OpenSSL_1_0_2l
    • OpenSSL_1_0_2k
    • OpenSSL_1_0_2j
    • OpenSSL_1_0_2i
    • OpenSSL_1_0_2h
    • OpenSSL_1_0_2g
    • OpenSSL_1_0_2f
    • OpenSSL_1_0_2e
    • OpenSSL_1_0_2d
    • OpenSSL_1_0_2c
    • OpenSSL_1_0_2b
    • OpenSSL_1_0_2a
    • OpenSSL_1_0_2-pre-reformat
    • OpenSSL_1_0_2-pre-auto-reformat
    • OpenSSL_1_0_2-post-reformat
    • OpenSSL_1_0_2-post-auto-reformat
    • OpenSSL_1_0_2-beta3
    • OpenSSL_1_0_2-beta2
    • OpenSSL_1_0_2-beta1
    • OpenSSL_1_0_2
    • OpenSSL_1_0_1u
    • OpenSSL_1_0_1t
    • OpenSSL_1_0_1s
    • OpenSSL_1_0_1r
    • OpenSSL_1_0_1q
    • OpenSSL_1_0_1p
    • OpenSSL_1_0_1o
    • OpenSSL_1_0_1n
    • OpenSSL_1_0_1m
    • OpenSSL_1_0_1l
    • OpenSSL_1_0_1k
    • OpenSSL_1_0_1j
    • OpenSSL_1_0_1i
    • OpenSSL_1_0_1h
    • OpenSSL_1_0_1g
    • OpenSSL_1_0_1f
    • OpenSSL_1_0_1e
    • OpenSSL_1_0_1d
    • OpenSSL_1_0_1-pre-reformat
    • OpenSSL_1_0_1-pre-auto-reformat
    • OpenSSL_1_0_1-post-reformat
    • OpenSSL_1_0_1-post-auto-reformat
    • OpenSSL_1_0_0t
    • OpenSSL_1_0_0s
    • OpenSSL_1_0_0r
    • OpenSSL_1_0_0q
    • OpenSSL_1_0_0p
    • OpenSSL_1_0_0o
    • OpenSSL_1_0_0n
    • OpenSSL_1_0_0m
    • OpenSSL_1_0_0l
    • OpenSSL_1_0_0k
    • OpenSSL_1_0_0-pre-reformat
    • OpenSSL_1_0_0-pre-auto-reformat
    • OpenSSL_1_0_0-post-reformat
    • OpenSSL_1_0_0-post-auto-reformat
    • OpenSSL_0_9_8zh
    • OpenSSL_0_9_8zg
    • OpenSSL_0_9_8zf
    • OpenSSL_0_9_8ze
    • OpenSSL_0_9_8zd
    • OpenSSL_0_9_8zc
    • OpenSSL_0_9_8zb
    • OpenSSL_0_9_8za
    • OpenSSL_0_9_8y
    • OpenSSL_0_9_8-pre-reformat
    • OpenSSL_0_9_8-pre-auto-reformat
    • OpenSSL_0_9_8-post-reformat
    • OpenSSL_0_9_8-post-auto-reformat
    • OpenSSL-fips-2_0_9
    • OpenSSL-fips-2_0_8
    • OpenSSL-fips-2_0_7
    • OpenSSL-fips-2_0_6
    • OpenSSL-fips-2_0_5
    • OpenSSL-fips-2_0_4
    • OpenSSL-fips-2_0_3
    • OpenSSL-fips-2_0_2
    • OpenSSL-fips-2_0_16
    • OpenSSL-fips-2_0_15
    • OpenSSL-fips-2_0_14
    • OpenSSL-fips-2_0_13
    • OpenSSL-fips-2_0_12
    • OpenSSL-fips-2_0_11
    • OpenSSL-fips-2_0_10
  • 5578b56
  • /
  • providers
  • /
  • implementations
  • /
  • ciphers
  • /
  • cipher_aes_cbc_hmac_sha256_hw.c
Raw File
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
  • release
content badge Iframe embedding
swh:1:cnt:f5b2f8b6da32e8c85ef0362935a6a5f423fee601
directory badge Iframe embedding
swh:1:dir:4015cf03607dcbc4b4978cec9d3731b4c8c6219a
revision badge
swh:1:rev:31157bc0b46e04227b8468d3e6915e4d0332777c
snapshot badge
swh:1:snp:dc2a5002442a00b1c0eda7c65d04ea7455e166cd
release badge
swh:1:rel:c882e62de65b0ef1a14b09358f1c54d1bf2ba2fc
Tip revision: 31157bc0b46e04227b8468d3e6915e4d0332777c authored by Richard Levitte on 07 February 2023, 13:43:33 UTC
Prepare for release of 3.0.8
Tip revision: 31157bc
cipher_aes_cbc_hmac_sha256_hw.c
/*
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * All low level APIs are deprecated for public use, but still ok for internal
 * use where we're using them to implement the higher level EVP interface, as is
 * the case here.
 */
#include "internal/deprecated.h"

#include "cipher_aes_cbc_hmac_sha.h"

#if !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE)
int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
{
    return 0;
}

const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
{
    return NULL;
}
#else

# include <openssl/rand.h>
# include "crypto/evp.h"
# include "internal/constant_time.h"

void sha256_block_data_order(void *c, const void *p, size_t len);
int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
                         const AES_KEY *key, unsigned char iv[16],
                         SHA256_CTX *ctx, const void *in0);

int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
{
    return AESNI_CBC_HMAC_SHA_CAPABLE
           && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL);
}

static int aesni_cbc_hmac_sha256_init_key(PROV_CIPHER_CTX *vctx,
                                          const unsigned char *key,
                                          size_t keylen)
{
    int ret;
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;

    if (ctx->base.enc)
        ret = aesni_set_encrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
    else
        ret = aesni_set_decrypt_key(key, ctx->base.keylen * 8, &ctx->ks);

    SHA256_Init(&sctx->head);    /* handy when benchmarking */
    sctx->tail = sctx->head;
    sctx->md = sctx->head;

    ctx->payload_length = NO_PAYLOAD_LENGTH;

    vctx->removetlspad = 1;
    vctx->removetlsfixed = SHA256_DIGEST_LENGTH + AES_BLOCK_SIZE;

    return ret < 0 ? 0 : 1;
}

void sha256_block_data_order(void *c, const void *p, size_t len);

static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
{
    const unsigned char *ptr = data;
    size_t res;

    if ((res = c->num)) {
        res = SHA256_CBLOCK - res;
        if (len < res)
            res = len;
        SHA256_Update(c, ptr, res);
        ptr += res;
        len -= res;
    }

    res = len % SHA256_CBLOCK;
    len -= res;

    if (len) {
        sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);

        ptr += len;
        c->Nh += len >> 29;
        c->Nl += len <<= 3;
        if (c->Nl < (unsigned int)len)
            c->Nh++;
    }

    if (res)
        SHA256_Update(c, ptr, res);
}

# if !defined(OPENSSL_NO_MULTIBLOCK)

typedef struct {
    unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
} SHA256_MB_CTX;

typedef struct {
    const unsigned char *ptr;
    int blocks;
} HASH_DESC;

typedef struct {
    const unsigned char *inp;
    unsigned char *out;
    int blocks;
    u64 iv[2];
} CIPH_DESC;

void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);

static size_t tls1_multi_block_encrypt(void *vctx,
                                       unsigned char *out,
                                       const unsigned char *inp,
                                       size_t inp_len, int n4x)
{                               /* n4x is 1 or 2 */
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    HASH_DESC hash_d[8], edges[8];
    CIPH_DESC ciph_d[8];
    unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
    union {
        u64 q[16];
        u32 d[32];
        u8 c[128];
    } blocks[8];
    SHA256_MB_CTX *mctx;
    unsigned int frag, last, packlen, i;
    unsigned int x4 = 4 * n4x, minblocks, processed = 0;
    size_t ret = 0;
    u8 *IVs;
#  if defined(BSWAP8)
    u64 seqnum;
#  endif

    /* ask for IVs in bulk */
    if (RAND_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4, 0) <= 0)
        return 0;

    mctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */

    frag = (unsigned int)inp_len >> (1 + n4x);
    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
        frag++;
        last -= x4 - 1;
    }

    packlen = 5 + 16 + ((frag + 32 + 16) & -16);

    /* populate descriptors with pointers and IVs */
    hash_d[0].ptr = inp;
    ciph_d[0].inp = inp;
    /* 5+16 is place for header and explicit IV */
    ciph_d[0].out = out + 5 + 16;
    memcpy(ciph_d[0].out - 16, IVs, 16);
    memcpy(ciph_d[0].iv, IVs, 16);
    IVs += 16;

    for (i = 1; i < x4; i++) {
        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
        ciph_d[i].out = ciph_d[i - 1].out + packlen;
        memcpy(ciph_d[i].out - 16, IVs, 16);
        memcpy(ciph_d[i].iv, IVs, 16);
        IVs += 16;
    }

#  if defined(BSWAP8)
    memcpy(blocks[0].c, sctx->md.data, 8);
    seqnum = BSWAP8(blocks[0].q[0]);
#  endif

    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag);
#  if !defined(BSWAP8)
        unsigned int carry, j;
#  endif

        mctx->A[i] = sctx->md.h[0];
        mctx->B[i] = sctx->md.h[1];
        mctx->C[i] = sctx->md.h[2];
        mctx->D[i] = sctx->md.h[3];
        mctx->E[i] = sctx->md.h[4];
        mctx->F[i] = sctx->md.h[5];
        mctx->G[i] = sctx->md.h[6];
        mctx->H[i] = sctx->md.h[7];

        /* fix seqnum */
#  if defined(BSWAP8)
        blocks[i].q[0] = BSWAP8(seqnum + i);
#  else
        for (carry = i, j = 8; j--;) {
            blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry;
            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
        }
#  endif
        blocks[i].c[8] = ((u8 *)sctx->md.data)[8];
        blocks[i].c[9] = ((u8 *)sctx->md.data)[9];
        blocks[i].c[10] = ((u8 *)sctx->md.data)[10];
        /* fix length */
        blocks[i].c[11] = (u8)(len >> 8);
        blocks[i].c[12] = (u8)(len);

        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
        hash_d[i].ptr += 64 - 13;
        hash_d[i].blocks = (len - (64 - 13)) / 64;

        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* hash 13-byte headers and first 64-13 bytes of inputs */
    sha256_multi_block(mctx, edges, n4x);
    /* hash bulk inputs */
#  define MAXCHUNKSIZE    2048
#  if     MAXCHUNKSIZE%64
#   error  "MAXCHUNKSIZE is not divisible by 64"
#  elif   MAXCHUNKSIZE
    /*
     * goal is to minimize pressure on L1 cache by moving in shorter steps,
     * so that hashed data is still in the cache by the time we encrypt it
     */
    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
    if (minblocks > MAXCHUNKSIZE / 64) {
        for (i = 0; i < x4; i++) {
            edges[i].ptr = hash_d[i].ptr;
            edges[i].blocks = MAXCHUNKSIZE / 64;
            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
        }
        do {
            sha256_multi_block(mctx, edges, n4x);
            aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);

            for (i = 0; i < x4; i++) {
                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
                edges[i].blocks = MAXCHUNKSIZE / 64;
                ciph_d[i].inp += MAXCHUNKSIZE;
                ciph_d[i].out += MAXCHUNKSIZE;
                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
            }
            processed += MAXCHUNKSIZE;
            minblocks -= MAXCHUNKSIZE / 64;
        } while (minblocks > MAXCHUNKSIZE / 64);
    }
#  endif
#  undef  MAXCHUNKSIZE
    sha256_multi_block(mctx, hash_d, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag),
            off = hash_d[i].blocks * 64;
        const unsigned char *ptr = hash_d[i].ptr + off;

        off = (len - processed) - (64 - 13) - off; /* remainder actually */
        memcpy(blocks[i].c, ptr, off);
        blocks[i].c[off] = 0x80;
        len += 64 + 13;         /* 64 is HMAC header */
        len *= 8;               /* convert to bits */
        if (off < (64 - 8)) {
#  ifdef BSWAP4
            blocks[i].d[15] = BSWAP4(len);
#  else
            PUTU32(blocks[i].c + 60, len);
#  endif
            edges[i].blocks = 1;
        } else {
#  ifdef BSWAP4
            blocks[i].d[31] = BSWAP4(len);
#  else
            PUTU32(blocks[i].c + 124, len);
#  endif
            edges[i].blocks = 2;
        }
        edges[i].ptr = blocks[i].c;
    }

    /* hash input tails and finalize */
    sha256_multi_block(mctx, edges, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
#  ifdef BSWAP4
        blocks[i].d[0] = BSWAP4(mctx->A[i]);
        mctx->A[i] = sctx->tail.h[0];
        blocks[i].d[1] = BSWAP4(mctx->B[i]);
        mctx->B[i] = sctx->tail.h[1];
        blocks[i].d[2] = BSWAP4(mctx->C[i]);
        mctx->C[i] = sctx->tail.h[2];
        blocks[i].d[3] = BSWAP4(mctx->D[i]);
        mctx->D[i] = sctx->tail.h[3];
        blocks[i].d[4] = BSWAP4(mctx->E[i]);
        mctx->E[i] = sctx->tail.h[4];
        blocks[i].d[5] = BSWAP4(mctx->F[i]);
        mctx->F[i] = sctx->tail.h[5];
        blocks[i].d[6] = BSWAP4(mctx->G[i]);
        mctx->G[i] = sctx->tail.h[6];
        blocks[i].d[7] = BSWAP4(mctx->H[i]);
        mctx->H[i] = sctx->tail.h[7];
        blocks[i].c[32] = 0x80;
        blocks[i].d[15] = BSWAP4((64 + 32) * 8);
#  else
        PUTU32(blocks[i].c + 0, mctx->A[i]);
        mctx->A[i] = sctx->tail.h[0];
        PUTU32(blocks[i].c + 4, mctx->B[i]);
        mctx->B[i] = sctx->tail.h[1];
        PUTU32(blocks[i].c + 8, mctx->C[i]);
        mctx->C[i] = sctx->tail.h[2];
        PUTU32(blocks[i].c + 12, mctx->D[i]);
        mctx->D[i] = sctx->tail.h[3];
        PUTU32(blocks[i].c + 16, mctx->E[i]);
        mctx->E[i] = sctx->tail.h[4];
        PUTU32(blocks[i].c + 20, mctx->F[i]);
        mctx->F[i] = sctx->tail.h[5];
        PUTU32(blocks[i].c + 24, mctx->G[i]);
        mctx->G[i] = sctx->tail.h[6];
        PUTU32(blocks[i].c + 28, mctx->H[i]);
        mctx->H[i] = sctx->tail.h[7];
        blocks[i].c[32] = 0x80;
        PUTU32(blocks[i].c + 60, (64 + 32) * 8);
#  endif /* BSWAP */
        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* finalize MACs */
    sha256_multi_block(mctx, edges, n4x);

    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
        unsigned char *out0 = out;

        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
        ciph_d[i].inp = ciph_d[i].out;

        out += 5 + 16 + len;

        /* write MAC */
        PUTU32(out + 0, mctx->A[i]);
        PUTU32(out + 4, mctx->B[i]);
        PUTU32(out + 8, mctx->C[i]);
        PUTU32(out + 12, mctx->D[i]);
        PUTU32(out + 16, mctx->E[i]);
        PUTU32(out + 20, mctx->F[i]);
        PUTU32(out + 24, mctx->G[i]);
        PUTU32(out + 28, mctx->H[i]);
        out += 32;
        len += 32;

        /* pad */
        pad = 15 - len % 16;
        for (j = 0; j <= pad; j++)
            *(out++) = pad;
        len += pad + 1;

        ciph_d[i].blocks = (len - processed) / 16;
        len += 16;              /* account for explicit iv */

        /* arrange header */
        out0[0] = ((u8 *)sctx->md.data)[8];
        out0[1] = ((u8 *)sctx->md.data)[9];
        out0[2] = ((u8 *)sctx->md.data)[10];
        out0[3] = (u8)(len >> 8);
        out0[4] = (u8)(len);

        ret += len + 5;
        inp += frag;
    }

    aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);

    OPENSSL_cleanse(blocks, sizeof(blocks));
    OPENSSL_cleanse(mctx, sizeof(*mctx));

    ctx->multiblock_encrypt_len = ret;
    return ret;
}
# endif /* !OPENSSL_NO_MULTIBLOCK */

static int aesni_cbc_hmac_sha256_cipher(PROV_CIPHER_CTX *vctx,
                                        unsigned char *out,
                                        const unsigned char *in, size_t len)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned int l;
    size_t plen = ctx->payload_length;
    size_t iv = 0; /* explicit IV in TLS 1.1 and * later */
    size_t aes_off = 0, blocks;
    size_t sha_off = SHA256_CBLOCK - sctx->md.num;

    ctx->payload_length = NO_PAYLOAD_LENGTH;

    if (len % AES_BLOCK_SIZE)
        return 0;

    if (ctx->base.enc) {
        if (plen == NO_PAYLOAD_LENGTH)
            plen = len;
        else if (len !=
                 ((plen + SHA256_DIGEST_LENGTH +
                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
            return 0;
        else if (ctx->aux.tls_ver >= TLS1_1_VERSION)
            iv = AES_BLOCK_SIZE;

        /*
         * Assembly stitch handles AVX-capable processors, but its
         * performance is not optimal on AMD Jaguar, ~40% worse, for
         * unknown reasons. Incidentally processor in question supports
         * AVX, but not AMD-specific XOP extension, which can be used
         * to identify it and avoid stitch invocation. So that after we
         * establish that current CPU supports AVX, we even see if it's
         * either even XOP-capable Bulldozer-based or GenuineIntel one.
         * But SHAEXT-capable go ahead...
         */
        if (((OPENSSL_ia32cap_P[2] & (1 << 29)) ||         /* SHAEXT? */
             ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
              ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32)))   /* XOP? */
               | (OPENSSL_ia32cap_P[0] & (1 << 30))))) &&  /* "Intel CPU"? */
            plen > (sha_off + iv) &&
            (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
            sha256_update(&sctx->md, in + iv, sha_off);

            (void)aesni_cbc_sha256_enc(in, out, blocks, &ctx->ks,
                                       ctx->base.iv,
                                       &sctx->md, in + iv + sha_off);
            blocks *= SHA256_CBLOCK;
            aes_off += blocks;
            sha_off += blocks;
            sctx->md.Nh += blocks >> 29;
            sctx->md.Nl += blocks <<= 3;
            if (sctx->md.Nl < (unsigned int)blocks)
                sctx->md.Nh++;
        } else {
            sha_off = 0;
        }
        sha_off += iv;
        sha256_update(&sctx->md, in + sha_off, plen - sha_off);

        if (plen != len) {      /* "TLS" mode of operation */
            if (in != out)
                memcpy(out + aes_off, in + aes_off, plen - aes_off);

            /* calculate HMAC and append it to payload */
            SHA256_Final(out + plen, &sctx->md);
            sctx->md = sctx->tail;
            sha256_update(&sctx->md, out + plen, SHA256_DIGEST_LENGTH);
            SHA256_Final(out + plen, &sctx->md);

            /* pad the payload|hmac */
            plen += SHA256_DIGEST_LENGTH;
            for (l = len - plen - 1; plen < len; plen++)
                out[plen] = l;
            /* encrypt HMAC|padding at once */
            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
                              &ctx->ks, ctx->base.iv, 1);
        } else {
            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
                              &ctx->ks, ctx->base.iv, 1);
        }
    } else {
        union {
            unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
            unsigned char c[64 + SHA256_DIGEST_LENGTH];
        } mac, *pmac;

        /* arrange cache line alignment */
        pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));

        /* decrypt HMAC|padding at once */
        aesni_cbc_encrypt(in, out, len, &ctx->ks,
                          ctx->base.iv, 0);

        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
            size_t inp_len, mask, j, i;
            unsigned int res, maxpad, pad, bitlen;
            int ret = 1;
            union {
                unsigned int u[SHA_LBLOCK];
                unsigned char c[SHA256_CBLOCK];
            } *data = (void *)sctx->md.data;

            if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3])
                >= TLS1_1_VERSION)
                iv = AES_BLOCK_SIZE;

            if (len < (iv + SHA256_DIGEST_LENGTH + 1))
                return 0;

            /* omit explicit iv */
            out += iv;
            len -= iv;

            /* figure out payload length */
            pad = out[len - 1];
            maxpad = len - (SHA256_DIGEST_LENGTH + 1);
            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
            maxpad &= 255;

            mask = constant_time_ge(maxpad, pad);
            ret &= mask;
            /*
             * If pad is invalid then we will fail the above test but we must
             * continue anyway because we are in constant time code. However,
             * we'll use the maxpad value instead of the supplied pad to make
             * sure we perform well defined pointer arithmetic.
             */
            pad = constant_time_select(mask, pad, maxpad);

            inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);

            ctx->aux.tls_aad[plen - 2] = inp_len >> 8;
            ctx->aux.tls_aad[plen - 1] = inp_len;

            /* calculate HMAC */
            sctx->md = sctx->head;
            sha256_update(&sctx->md, ctx->aux.tls_aad, plen);

            /* code with lucky-13 fix */
            len -= SHA256_DIGEST_LENGTH; /* amend mac */
            if (len >= (256 + SHA256_CBLOCK)) {
                j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
                j += SHA256_CBLOCK - sctx->md.num;
                sha256_update(&sctx->md, out, j);
                out += j;
                len -= j;
                inp_len -= j;
            }

            /* but pretend as if we hashed padded payload */
            bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */
# ifdef BSWAP4
            bitlen = BSWAP4(bitlen);
# else
            mac.c[0] = 0;
            mac.c[1] = (unsigned char)(bitlen >> 16);
            mac.c[2] = (unsigned char)(bitlen >> 8);
            mac.c[3] = (unsigned char)bitlen;
            bitlen = mac.u[0];
# endif /* BSWAP */

            pmac->u[0] = 0;
            pmac->u[1] = 0;
            pmac->u[2] = 0;
            pmac->u[3] = 0;
            pmac->u[4] = 0;
            pmac->u[5] = 0;
            pmac->u[6] = 0;
            pmac->u[7] = 0;

            for (res = sctx->md.num, j = 0; j < len; j++) {
                size_t c = out[j];
                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
                c &= mask;
                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
                data->c[res++] = (unsigned char)c;

                if (res != SHA256_CBLOCK)
                    continue;

                /* j is not incremented yet */
                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha256_block_data_order(&sctx->md, data, 1);
                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= sctx->md.h[0] & mask;
                pmac->u[1] |= sctx->md.h[1] & mask;
                pmac->u[2] |= sctx->md.h[2] & mask;
                pmac->u[3] |= sctx->md.h[3] & mask;
                pmac->u[4] |= sctx->md.h[4] & mask;
                pmac->u[5] |= sctx->md.h[5] & mask;
                pmac->u[6] |= sctx->md.h[6] & mask;
                pmac->u[7] |= sctx->md.h[7] & mask;
                res = 0;
            }

            for (i = res; i < SHA256_CBLOCK; i++, j++)
                data->c[i] = 0;

            if (res > SHA256_CBLOCK - 8) {
                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha256_block_data_order(&sctx->md, data, 1);
                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= sctx->md.h[0] & mask;
                pmac->u[1] |= sctx->md.h[1] & mask;
                pmac->u[2] |= sctx->md.h[2] & mask;
                pmac->u[3] |= sctx->md.h[3] & mask;
                pmac->u[4] |= sctx->md.h[4] & mask;
                pmac->u[5] |= sctx->md.h[5] & mask;
                pmac->u[6] |= sctx->md.h[6] & mask;
                pmac->u[7] |= sctx->md.h[7] & mask;

                memset(data, 0, SHA256_CBLOCK);
                j += 64;
            }
            data->u[SHA_LBLOCK - 1] = bitlen;
            sha256_block_data_order(&sctx->md, data, 1);
            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
            pmac->u[0] |= sctx->md.h[0] & mask;
            pmac->u[1] |= sctx->md.h[1] & mask;
            pmac->u[2] |= sctx->md.h[2] & mask;
            pmac->u[3] |= sctx->md.h[3] & mask;
            pmac->u[4] |= sctx->md.h[4] & mask;
            pmac->u[5] |= sctx->md.h[5] & mask;
            pmac->u[6] |= sctx->md.h[6] & mask;
            pmac->u[7] |= sctx->md.h[7] & mask;

# ifdef BSWAP4
            pmac->u[0] = BSWAP4(pmac->u[0]);
            pmac->u[1] = BSWAP4(pmac->u[1]);
            pmac->u[2] = BSWAP4(pmac->u[2]);
            pmac->u[3] = BSWAP4(pmac->u[3]);
            pmac->u[4] = BSWAP4(pmac->u[4]);
            pmac->u[5] = BSWAP4(pmac->u[5]);
            pmac->u[6] = BSWAP4(pmac->u[6]);
            pmac->u[7] = BSWAP4(pmac->u[7]);
# else
            for (i = 0; i < 8; i++) {
                res = pmac->u[i];
                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
                pmac->c[4 * i + 3] = (unsigned char)res;
            }
# endif /* BSWAP */
            len += SHA256_DIGEST_LENGTH;
            sctx->md = sctx->tail;
            sha256_update(&sctx->md, pmac->c, SHA256_DIGEST_LENGTH);
            SHA256_Final(pmac->c, &sctx->md);

            /* verify HMAC */
            out += inp_len;
            len -= inp_len;
            /* code containing lucky-13 fix */
            {
                unsigned char *p =
                    out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
                size_t off = out - p;
                unsigned int c, cmask;

                for (res = 0, i = 0, j = 0;
                     j < maxpad + SHA256_DIGEST_LENGTH;
                     j++) {
                    c = p[j];
                    cmask =
                        ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
                        (sizeof(int) * 8 - 1);
                    res |= (c ^ pad) & ~cmask; /* ... and padding */
                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
                    res |= (c ^ pmac->c[i]) & cmask;
                    i += 1 & cmask;
                }

                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
                ret &= (int)~res;
            }
            return ret;
        } else {
            sha256_update(&sctx->md, out, len);
        }
    }

    return 1;
}

/* EVP_CTRL_AEAD_SET_MAC_KEY */
static void aesni_cbc_hmac_sha256_set_mac_key(void *vctx,
                                              const unsigned char *mackey,
                                              size_t len)
{
    PROV_AES_HMAC_SHA256_CTX *ctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned int i;
    unsigned char hmac_key[64];

    memset(hmac_key, 0, sizeof(hmac_key));

    if (len > sizeof(hmac_key)) {
        SHA256_Init(&ctx->head);
        sha256_update(&ctx->head, mackey, len);
        SHA256_Final(hmac_key, &ctx->head);
    } else {
        memcpy(hmac_key, mackey, len);
    }

    for (i = 0; i < sizeof(hmac_key); i++)
        hmac_key[i] ^= 0x36; /* ipad */
    SHA256_Init(&ctx->head);
    sha256_update(&ctx->head, hmac_key, sizeof(hmac_key));

    for (i = 0; i < sizeof(hmac_key); i++)
        hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
    SHA256_Init(&ctx->tail);
    sha256_update(&ctx->tail, hmac_key, sizeof(hmac_key));

    OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
}

/* EVP_CTRL_AEAD_TLS1_AAD */
static int aesni_cbc_hmac_sha256_set_tls1_aad(void *vctx,
                                              unsigned char *aad_rec, int aad_len)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned char *p = aad_rec;
    unsigned int len;

    if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
        return -1;

    len = p[aad_len - 2] << 8 | p[aad_len - 1];

    if (ctx->base.enc) {
        ctx->payload_length = len;
        if ((ctx->aux.tls_ver =
             p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) {
            if (len < AES_BLOCK_SIZE)
                return 0;
            len -= AES_BLOCK_SIZE;
            p[aad_len - 2] = len >> 8;
            p[aad_len - 1] = len;
        }
        sctx->md = sctx->head;
        sha256_update(&sctx->md, p, aad_len);
        ctx->tls_aad_pad = (int)(((len + SHA256_DIGEST_LENGTH +
                                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
                                   - len);
        return 1;
    } else {
        memcpy(ctx->aux.tls_aad, p, aad_len);
        ctx->payload_length = aad_len;
        ctx->tls_aad_pad = SHA256_DIGEST_LENGTH;
        return 1;
    }
}

# if !defined(OPENSSL_NO_MULTIBLOCK)
/* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */
static int aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize(
    void *vctx)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;

    OPENSSL_assert(ctx->multiblock_max_send_fragment != 0);
    return (int)(5 + 16
                 + (((int)ctx->multiblock_max_send_fragment + 32 + 16) & -16));
}

/* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */
static int aesni_cbc_hmac_sha256_tls1_multiblock_aad(
    void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned int n4x = 1, x4;
    unsigned int frag, last, packlen, inp_len;

    inp_len = param->inp[11] << 8 | param->inp[12];

    if (ctx->base.enc) {
        if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
            return -1;

        if (inp_len) {
            if (inp_len < 4096)
                return 0; /* too short */

            if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
                n4x = 2; /* AVX2 */
        } else if ((n4x = param->interleave / 4) && n4x <= 2)
            inp_len = param->len;
        else
            return -1;

        sctx->md = sctx->head;
        sha256_update(&sctx->md, param->inp, 13);

        x4 = 4 * n4x;
        n4x += 1;

        frag = inp_len >> n4x;
        last = inp_len + frag - (frag << n4x);
        if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
            frag++;
            last -= x4 - 1;
        }

        packlen = 5 + 16 + ((frag + 32 + 16) & -16);
        packlen = (packlen << n4x) - packlen;
        packlen += 5 + 16 + ((last + 32 + 16) & -16);

        param->interleave = x4;
        /* The returned values used by get need to be stored */
        ctx->multiblock_interleave = x4;
        ctx->multiblock_aad_packlen = packlen;
        return 1;
    }
    return -1;      /* not yet */
}

/* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */
static int aesni_cbc_hmac_sha256_tls1_multiblock_encrypt(
    void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
{
    return (int)tls1_multi_block_encrypt(ctx, param->out,
                                         param->inp, param->len,
                                         param->interleave / 4);
}
# endif

static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha256 = {
    {
      aesni_cbc_hmac_sha256_init_key,
      aesni_cbc_hmac_sha256_cipher
    },
    aesni_cbc_hmac_sha256_set_mac_key,
    aesni_cbc_hmac_sha256_set_tls1_aad,
# if !defined(OPENSSL_NO_MULTIBLOCK)
    aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize,
    aesni_cbc_hmac_sha256_tls1_multiblock_aad,
    aesni_cbc_hmac_sha256_tls1_multiblock_encrypt
# endif
};

const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
{
    return &cipher_hw_aes_hmac_sha256;
}

#endif /* !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) */

ENEA — Copyright (C), ENEA. License: GNU AGPLv3+.
Legal notes  ::  JavaScript license information ::  Web API

back to top